SRM Workshop 2022
Interactive mapping and analysis of geospatial big data using geemap and Google Earth Engine
This notebook was developed for the geemap workshop at the Society for Range Management (SRM) 2022 Annual Meeting.
Authors: Qiusheng Wu
Link to this notebook: https://gishub.org/SRM
Introduction¶
Description¶
Google Earth Engine (GEE) is a cloud computing platform with a multi-petabyte catalog of satellite imagery and geospatial datasets. It enables scientists, researchers, and developers to analyze and visualize changes on the Earth’s surface. The geemap Python package provides GEE users with an intuitive interface to manipulate, analyze, and visualize geospatial big data interactively in a Jupyter-based environment. The topics to be covered in this workshop include:
- Introducing geemap
- Creating interactive maps
- Searching GEE data catalog
- Data Visualization
- Data Analysis
- Data Export
This workshop is intended for scientific programmers, data scientists, geospatial analysts, and concerned citizens of Earth. The attendees are expected to have a basic understanding of Python and the Jupyter ecosystem. Familiarity with Earth science and geospatial datasets is useful but not required.
Useful links¶
- Streamlit Geospatial
- Google Earth Engine
- geemap.org
- Google Earth Engine and geemap Python Tutorials (55 videos with a total length of 15 hours)
- Spatial Data Management with Google Earth Engine (19 videos with a total length of 9 hours)
- Ask geemap questions on GitHub
Prerequisite¶
- A Google Earth Engine account. Sigh up here if needed.
- Miniconda or Anaconda has been installed on your computer.
Set up a conda environment¶
conda create -n gee python=3.9
conda activate gee
conda install geopandas
conda install mamba -c conda-forge
mamba install geemap localtileserver -c conda-forge
Launch JupyterLab¶
Open Anaconda Prompt or the Terminal and enter the following commands.
conda activate gee
jupyter lab
import subprocess
try:
import geemap
except ImportError:
print('Installing geemap ...')
subprocess.check_call(["python", '-m', 'pip', 'install', 'geemap'])
Import libraries¶
import os
import ee
import geemap
Create an interactive map¶
Map = geemap.Map()
Map
Customize the default map¶
You can specify the center(lat, lon) and zoom for the default map. You can also set the visibility of the controls.
Map = geemap.Map(center=(40, -100), zoom=4, draw_ctrl=False, toolbar_ctrl=False)
Map
Add basemaps¶
Map = geemap.Map()
Map.add_basemap('HYBRID')
Map.add_basemap('OpenTopoMap')
Map
Change basemaps interactively¶
Map = geemap.Map()
Map
Use drawing tools¶
Map = geemap.Map()
Map
# Map.user_roi.getInfo()
# Map.user_rois.getInfo()
Convert GEE JavaScript to Python¶
https://developers.google.com/earth-engine/guides/image_visualization
js_snippet = """
// Load an image.
var image = ee.Image('LANDSAT/LC08/C01/T1_TOA/LC08_044034_20140318');
// Define the visualization parameters.
var vizParams = {
bands: ['B5', 'B4', 'B3'],
min: 0,
max: 0.5,
gamma: [0.95, 1.1, 1]
};
// Center the map and display the image.
Map.setCenter(-122.1899, 37.5010, 10); // San Francisco Bay
Map.addLayer(image, vizParams, 'false color composite');
"""
geemap.js_snippet_to_py(
js_snippet, add_new_cell=True, import_ee=True, import_geemap=True, show_map=True
)
import ee
import geemap
Map = geemap.Map()
# Load an image.
image = ee.Image('LANDSAT/LC08/C01/T1_TOA/LC08_044034_20140318')
# Define the visualization parameters.
vizParams = {'bands': ['B5', 'B4', 'B3'], 'min': 0, 'max': 0.5, 'gamma': [0.95, 1.1, 1]}
# Center the map and display the image.
Map.setCenter(-122.1899, 37.5010, 10)
# San Francisco Bay
Map.addLayer(image, vizParams, 'False color composite')
Map
You can also convert GEE JavaScript to Python without coding.
Map = geemap.Map()
Map
Earth Engine datasets¶
Load Earth Engine datasets¶
More GEE datasets can be found at https://developers.google.com/earth-engine/datasets/
Map = geemap.Map()
# Add Earth Engine datasets
dem = ee.Image('USGS/SRTMGL1_003')
landsat7 = ee.Image('LANDSAT/LE7_TOA_5YEAR/1999_2003')
states = ee.FeatureCollection("TIGER/2018/States")
# Set visualization parameters.
vis_params = {
'min': 0,
'max': 4000,
'palette': ['006633', 'E5FFCC', '662A00', 'D8D8D8', 'F5F5F5'],
}
# Add Earth Engine layers to Map
Map.addLayer(dem, vis_params, 'SRTM DEM', True, 0.5)
Map.addLayer(
landsat7,
{'bands': ['B4', 'B3', 'B2'], 'min': 20, 'max': 200, 'gamma': 1.5},
'Landsat 7',
)
Map.addLayer(states, {}, "US States")
Map
Search the Earth Engine Data Catalog¶
Map = geemap.Map()
Map
dem = ee.Image('CGIAR/SRTM90_V4')
Map.addLayer(dem, {}, "CGIAR/SRTM90_V4")
hillshade = ee.Terrain.hillshade(dem)
Map.addLayer(hillshade, {}, 'Hillshade')
vis_params = {
'min': 0,
'max': 4000,
'palette': ['006633', 'E5FFCC', '662A00', 'D8D8D8', 'F5F5F5'],
}
Map.addLayer(dem, vis_params, "DEM", True, 0.5)
Use the datasets module¶
from geemap.datasets import DATA
Map = geemap.Map()
dem = ee.Image(DATA.USGS_SRTMGL1_003)
vis_params = {
'min': 0,
'max': 4000,
'palette': ['006633', 'E5FFCC', '662A00', 'D8D8D8', 'F5F5F5'],
}
Map.addLayer(dem, vis_params, 'SRTM DEM')
Map
Use the Inspector tool¶
Map = geemap.Map()
# Add Earth Engine datasets
dem = ee.Image('USGS/SRTMGL1_003')
landsat7 = ee.Image('LANDSAT/LE7_TOA_5YEAR/1999_2003').select(
['B1', 'B2', 'B3', 'B4', 'B5', 'B7']
)
states = ee.FeatureCollection("TIGER/2018/States")
# Set visualization parameters.
vis_params = {
'min': 0,
'max': 4000,
'palette': ['006633', 'E5FFCC', '662A00', 'D8D8D8', 'F5F5F5'],
}
# Add Earth Engine layers to Map
Map.addLayer(dem, vis_params, 'SRTM DEM', True, 0.5)
Map.addLayer(
landsat7,
{'bands': ['B4', 'B3', 'B2'], 'min': 20, 'max': 180, 'gamma': 1.5},
'Landsat 7',
)
Map.addLayer(states, {}, "US States")
Map
Map = geemap.Map()
landsat7 = ee.Image('LANDSAT/LE7_TOA_5YEAR/1999_2003').select(
['B1', 'B2', 'B3', 'B4', 'B5', 'B7']
)
landsat_vis = {'bands': ['B4', 'B3', 'B2'], 'gamma': 1.4}
Map.addLayer(landsat7, landsat_vis, "Landsat")
hyperion = ee.ImageCollection('EO1/HYPERION').filter(
ee.Filter.date('2016-01-01', '2017-03-01')
)
hyperion_vis = {
'min': 1000.0,
'max': 14000.0,
'gamma': 2.5,
}
Map.addLayer(hyperion, hyperion_vis, 'Hyperion')
Map
Change layer opacity¶
Map = geemap.Map(center=(40, -100), zoom=4)
dem = ee.Image('USGS/SRTMGL1_003')
states = ee.FeatureCollection("TIGER/2018/States")
vis_params = {
'min': 0,
'max': 4000,
'palette': ['006633', 'E5FFCC', '662A00', 'D8D8D8', 'F5F5F5'],
}
Map.addLayer(dem, vis_params, 'SRTM DEM', True, 1)
Map.addLayer(states, {}, "US States", True)
Map
Visualize raster data¶
Map = geemap.Map(center=(40, -100), zoom=4)
# Add Earth Engine dataset
dem = ee.Image('USGS/SRTMGL1_003')
landsat7 = ee.Image('LANDSAT/LE7_TOA_5YEAR/1999_2003').select(
['B1', 'B2', 'B3', 'B4', 'B5', 'B7']
)
vis_params = {
'min': 0,
'max': 4000,
'palette': ['006633', 'E5FFCC', '662A00', 'D8D8D8', 'F5F5F5'],
}
Map.addLayer(dem, vis_params, 'SRTM DEM', True, 1)
Map.addLayer(
landsat7,
{'bands': ['B4', 'B3', 'B2'], 'min': 20, 'max': 200, 'gamma': 2},
'Landsat 7',
)
Map
Visualize vector data¶
Map = geemap.Map()
states = ee.FeatureCollection("TIGER/2018/States")
Map.addLayer(states, {}, "US States")
Map
vis_params = {
'color': '000000',
'colorOpacity': 1,
'pointSize': 3,
'pointShape': 'circle',
'width': 2,
'lineType': 'solid',
'fillColorOpacity': 0.66,
}
palette = ['006633', 'E5FFCC', '662A00', 'D8D8D8', 'F5F5F5']
Map.add_styled_vector(
states, column="NAME", palette=palette, layer_name="Styled vector", **vis_params
)
Add a legend¶
legends = geemap.builtin_legends
for legend in legends:
print(legend)
Map = geemap.Map()
Map.add_basemap('HYBRID')
dataset = ee.ImageCollection('USGS/NLCD_RELEASES/2016_REL')
nlcd2016 = dataset.filter(ee.Filter.eq('system:index', '2016')).first()
landcover = nlcd2016.select('landcover')
Map.addLayer(landcover, {}, 'NLCD Land Cover 2016')
Map.add_legend(builtin_legend='NLCD')
Map
Map = geemap.Map()
legend_dict = {
'11 Open Water': '466b9f',
'12 Perennial Ice/Snow': 'd1def8',
'21 Developed, Open Space': 'dec5c5',
'22 Developed, Low Intensity': 'd99282',
'23 Developed, Medium Intensity': 'eb0000',
'24 Developed High Intensity': 'ab0000',
'31 Barren Land (Rock/Sand/Clay)': 'b3ac9f',
'41 Deciduous Forest': '68ab5f',
'42 Evergreen Forest': '1c5f2c',
'43 Mixed Forest': 'b5c58f',
'51 Dwarf Scrub': 'af963c',
'52 Shrub/Scrub': 'ccb879',
'71 Grassland/Herbaceous': 'dfdfc2',
'72 Sedge/Herbaceous': 'd1d182',
'73 Lichens': 'a3cc51',
'74 Moss': '82ba9e',
'81 Pasture/Hay': 'dcd939',
'82 Cultivated Crops': 'ab6c28',
'90 Woody Wetlands': 'b8d9eb',
'95 Emergent Herbaceous Wetlands': '6c9fb8',
}
dataset = ee.ImageCollection('USGS/NLCD_RELEASES/2016_REL')
nlcd2016 = dataset.filter(ee.Filter.eq('system:index', '2016')).first()
landcover = nlcd2016.select('landcover')
Map.addLayer(landcover, {}, 'NLCD Land Cover 2016')
Map.add_legend(legend_title="NLCD Land Cover Classification", legend_dict=legend_dict)
Map
Add a colorbar¶
Map = geemap.Map()
dem = ee.Image('USGS/SRTMGL1_003')
vis_params = {
'min': 0,
'max': 4000,
'palette': ['006633', 'E5FFCC', '662A00', 'D8D8D8', 'F5F5F5'],
}
Map.addLayer(dem, vis_params, 'SRTM DEM')
colors = vis_params['palette']
vmin = vis_params['min']
vmax = vis_params['max']
Map.add_colorbar(vis_params, label="Elevation (m)", layer_name="SRTM DEM")
Map
Map.add_colorbar(
vis_params, label="Elevation (m)", layer_name="SRTM DEM", orientation="vertical"
)
Map.add_colorbar(
vis_params,
label="Elevation (m)",
layer_name="SRTM DEM",
orientation="vertical",
transparent_bg=True,
)
Map.add_colorbar(
vis_params,
label="Elevation (m)",
layer_name="SRTM DEM",
orientation="vertical",
transparent_bg=True,
discrete=True,
)
Create a split-panel map¶
Map = geemap.Map()
Map.split_map(left_layer='HYBRID', right_layer='TERRAIN')
Map
Map = geemap.Map(center=(40, -100), zoom=4)
Map.split_map(
left_layer='NLCD 2016 CONUS Land Cover', right_layer='NLCD 2001 CONUS Land Cover'
)
Map
Map = geemap.Map(center=(40, -100), zoom=4)
dataset = ee.ImageCollection('USGS/NLCD_RELEASES/2016_REL')
nlcd_2001 = (
dataset.filter(ee.Filter.eq('system:index', '2001')).first().select('landcover')
)
nlcd_2016 = (
dataset.filter(ee.Filter.eq('system:index', '2016')).first().select('landcover')
)
left_layer = geemap.ee_tile_layer(nlcd_2001, {}, 'NLCD 2001')
right_layer = geemap.ee_tile_layer(nlcd_2016, {}, 'NLCD 2016')
Map.split_map(left_layer, right_layer)
Map
Create linked maps¶
image = (
ee.ImageCollection('COPERNICUS/S2')
.filterDate('2018-09-01', '2018-09-30')
.map(lambda img: img.divide(10000))
.median()
)
vis_params = [
{'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 0.3, 'gamma': 1.3},
{'bands': ['B8', 'B11', 'B4'], 'min': 0, 'max': 0.3, 'gamma': 1.3},
{'bands': ['B8', 'B4', 'B3'], 'min': 0, 'max': 0.3, 'gamma': 1.3},
{'bands': ['B12', 'B12', 'B4'], 'min': 0, 'max': 0.3, 'gamma': 1.3},
]
labels = [
'Natural Color (B4/B3/B2)',
'Land/Water (B8/B11/B4)',
'Color Infrared (B8/B4/B3)',
'Vegetation (B12/B11/B4)',
]
geemap.linked_maps(
rows=2,
cols=2,
height="400px",
center=[38.4151, 21.2712],
zoom=12,
ee_objects=[image],
vis_params=vis_params,
labels=labels,
label_position="topright",
)
Use timeseries inspector¶
Using data from the Rangeland Analysis Platform.
- Vegetation cover dataset:
ee.ImageCollection('projects/rangeland-analysis-platform/vegetation-cover-v3')
- Rangeland production dataset:
ee.ImageCollection('projects/rangeland-analysis-platform/npp-partitioned-v3')
import geemap.colormaps as cm
Map = geemap.Map()
collection = ee.ImageCollection(
'projects/rangeland-analysis-platform/vegetation-cover-v3'
).select('TRE')
years = collection.aggregate_array('year').getInfo()
years
names = [str(i) for i in years]
names
palette = cm.palettes.ndvi
palette
vis_params = {'min': 0, 'max': 50, 'palette': palette}
# Map.addLayer(collection.first(), {}, "First image")
Map.ts_inspector(
left_ts=collection,
right_ts=collection,
left_names=names,
right_names=names,
left_vis=vis_params,
right_vis=vis_params,
)
Map
Data analysis¶
Descriptive statistics¶
Map = geemap.Map()
centroid = ee.Geometry.Point([-122.4439, 37.7538])
image = ee.ImageCollection('LANDSAT/LC08/C01/T1_SR').filterBounds(centroid).first()
vis = {'min': 0, 'max': 3000, 'bands': ['B5', 'B4', 'B3']}
Map.centerObject(centroid, 8)
Map.addLayer(image, vis, "Landsat-8")
Map
image.propertyNames().getInfo()
image.get('CLOUD_COVER').getInfo()
props = geemap.image_props(image)
props.getInfo()
stats = geemap.image_stats(image, scale=90)
stats.getInfo()
Zonal statistics¶
Map = geemap.Map()
# Add Earth Engine dataset
dem = ee.Image('USGS/SRTMGL1_003')
# Set visualization parameters.
dem_vis = {
'min': 0,
'max': 4000,
'palette': ['006633', 'E5FFCC', '662A00', 'D8D8D8', 'F5F5F5'],
}
# Add Earth Engine DEM to map
Map.addLayer(dem, dem_vis, 'SRTM DEM')
# Add Landsat data to map
landsat = ee.Image('LANDSAT/LE7_TOA_5YEAR/1999_2003')
landsat_vis = {'bands': ['B4', 'B3', 'B2'], 'gamma': 1.4}
Map.addLayer(landsat, landsat_vis, "LE7_TOA_5YEAR/1999_2003")
states = ee.FeatureCollection("TIGER/2018/States")
Map.addLayer(states, {}, 'US States')
Map
out_dem_stats = 'dem_stats.csv'
# Allowed output formats: csv, shp, json, kml, kmz
# Allowed statistics type: MEAN, MAXIMUM, MINIMUM, MEDIAN, STD, MIN_MAX, VARIANCE, SUM
geemap.zonal_statistics(dem, states, out_dem_stats, statistics_type='MEAN', scale=1000)
out_landsat_stats = 'landsat_stats.csv'
geemap.zonal_statistics(
landsat, states, out_landsat_stats, statistics_type='SUM', scale=1000
)
Zonal statistics by group¶
Map = geemap.Map()
dataset = ee.ImageCollection('USGS/NLCD_RELEASES/2016_REL')
nlcd2016 = dataset.filter(ee.Filter.eq('system:index', '2016')).first()
landcover = nlcd2016.select('landcover')
Map.addLayer(landcover, {}, 'NLCD 2016')
states = ee.FeatureCollection("TIGER/2018/States")
Map.addLayer(states, {}, 'US States')
Map.add_legend(builtin_legend='NLCD')
Map
nlcd_stats = 'nlcd_stats.csv'
# statistics_type can be either 'SUM' or 'PERCENTAGE'
# denominator can be used to convert square meters to other areal units, such as square kilimeters
geemap.zonal_statistics_by_group(
landcover,
states,
nlcd_stats,
statistics_type='SUM',
denominator=1000000,
decimal_places=2,
)
import whiteboxgui
whiteboxgui.show()
whiteboxgui.show(tree=True)
Map = geemap.Map()
Map
Data export¶
Export ee.Image¶
Map = geemap.Map()
image = ee.Image('LANDSAT/LE7_TOA_5YEAR/1999_2003')
landsat_vis = {'bands': ['B4', 'B3', 'B2'], 'gamma': 1.4}
Map.addLayer(image, landsat_vis, "LE7_TOA_5YEAR/1999_2003", True, 1)
Map
# Draw any shapes on the map using the Drawing tools before executing this code block
roi = Map.user_roi
if roi is None:
roi = ee.Geometry.Polygon(
[
[
[-115.413031, 35.889467],
[-115.413031, 36.543157],
[-114.034328, 36.543157],
[-114.034328, 35.889467],
[-115.413031, 35.889467],
]
]
)
filename = 'landsat.tif'
Exporting all bands as one single image
image = image.clip(roi).unmask()
geemap.ee_export_image(
image, filename=filename, scale=90, region=roi, file_per_band=False
)
Exporting each band as one image
geemap.ee_export_image(
image, filename=filename, scale=90, region=roi, file_per_band=True
)
Export an image to Google Drive¶
# geemap.ee_export_image_to_drive(image, description='landsat', folder='export', region=roi, scale=30)
Export ee.ImageCollection¶
loc = ee.Geometry.Point(-99.2222, 46.7816)
collection = (
ee.ImageCollection('USDA/NAIP/DOQQ')
.filterBounds(loc)
.filterDate('2008-01-01', '2020-01-01')
.filter(ee.Filter.listContains("system:band_names", "N"))
)
collection.aggregate_array('system:index').getInfo()
out_dir = os.getcwd()
geemap.ee_export_image_collection(collection, out_dir=out_dir)
# geemap.ee_export_image_collection_to_drive(collection, folder='export', scale=10)
Extract pixels as a numpy array¶
import matplotlib.pyplot as plt
img = ee.Image('LANDSAT/LC08/C01/T1_SR/LC08_038029_20180810').select(['B4', 'B5', 'B6'])
aoi = ee.Geometry.Polygon(
[[[-110.8, 44.7], [-110.8, 44.6], [-110.6, 44.6], [-110.6, 44.7]]], None, False
)
rgb_img = geemap.ee_to_numpy(img, region=aoi)
print(rgb_img.shape)
rgb_img_test = (255 * ((rgb_img[:, :, 0:3] - 100) / 3500)).astype('uint8')
plt.imshow(rgb_img_test)
plt.show()
Export pixel values to points¶
Map = geemap.Map()
# Add Earth Engine dataset
dem = ee.Image('USGS/SRTMGL1_003')
landsat7 = ee.Image('LANDSAT/LE7_TOA_5YEAR/1999_2003')
# Set visualization parameters.
vis_params = {
'min': 0,
'max': 4000,
'palette': ['006633', 'E5FFCC', '662A00', 'D8D8D8', 'F5F5F5'],
}
# Add Earth Engine layers to Map
Map.addLayer(
landsat7, {'bands': ['B4', 'B3', 'B2'], 'min': 20, 'max': 200}, 'Landsat 7'
)
Map.addLayer(dem, vis_params, 'SRTM DEM', True, 1)
Map
Download sample data
work_dir = os.getcwd()
in_shp = os.path.join(work_dir, 'us_cities.shp')
if not os.path.exists(in_shp):
data_url = 'https://github.com/giswqs/data/raw/main/us/us_cities.zip'
geemap.download_from_url(data_url, out_dir=work_dir)
in_fc = geemap.shp_to_ee(in_shp)
Map.addLayer(in_fc, {}, 'Cities')
Export pixel values as a shapefile
out_shp = os.path.join(work_dir, 'dem.shp')
geemap.extract_values_to_points(in_fc, dem, out_shp)
Export pixel values as a csv
out_csv = os.path.join(work_dir, 'landsat.csv')
geemap.extract_values_to_points(in_fc, landsat7, out_csv)
Export ee.FeatureCollection¶
Map = geemap.Map()
fc = ee.FeatureCollection('users/giswqs/public/countries')
Map.addLayer(fc, {}, "Countries")
Map
out_shp = 'countries.shp'
geemap.ee_to_shp(fc, filename=out_shp)
out_csv = os.path.join(out_dir, 'countries.csv')
geemap.ee_export_vector(fc, filename=out_csv)
out_kml = os.path.join(out_dir, 'countries.kml')
geemap.ee_export_vector(fc, filename=out_kml)
# geemap.ee_export_vector_to_drive(fc, description="countries", folder="export", file_format="shp")
Created: 2022-02-07