Visualizing and Analyzing Global Land Cover Data¶
Import libraries¶
In [ ]:
Copied!
# pip install geemap
# pip install geemap
In [ ]:
Copied!
import ee
import geemap
import ee
import geemap
In [ ]:
Copied!
geemap.ee_initialize()
geemap.ee_initialize()
Visualizing Global Land Cover Data Products¶
Creating Dynamic World Land Cover Composites¶
- App: https://www.dynamicworld.app
- App2: https://earthoutreach.users.earthengine.app/view/dynamicworld
- Paper: https://doi.org/10.1038/s41597-022-01307-4
- Model: https://github.com/google/dynamicworld
- Training data: https://doi.pangaea.de/10.1594/PANGAEA.933475
- Data: https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_DYNAMICWORLD_V1
- JavaScript tutorial: https://developers.google.com/earth-engine/tutorials/community/introduction-to-dynamic-world-pt-1
In [ ]:
Copied!
Map = geemap.Map()
Map.add_basemap('HYBRID')
Map
Map = geemap.Map()
Map.add_basemap('HYBRID')
Map
In [ ]:
Copied!
# Set the region of interest by simply drawing a polygon on the map
region = Map.user_roi
if region is None:
region = ee.Geometry.BBox(-89.7088, 42.9006, -89.0647, 43.2167)
Map.addLayer(region, {}, 'Region')
Map.centerObject(region)
# Set the region of interest by simply drawing a polygon on the map
region = Map.user_roi
if region is None:
region = ee.Geometry.BBox(-89.7088, 42.9006, -89.0647, 43.2167)
Map.addLayer(region, {}, 'Region')
Map.centerObject(region)
In [ ]:
Copied!
# Set the date range
start_date = '2021-01-01'
end_date = '2022-01-01'
# Set the date range
start_date = '2021-01-01'
end_date = '2022-01-01'
In [ ]:
Copied!
# Create a Sentinel-2 image composite
image = geemap.dynamic_world_s2(region, start_date, end_date, clip=True)
vis_params = {'bands': ['B8', 'B4', 'B3'], 'min': 0, 'max': 3000}
Map.addLayer(image, vis_params, 'Sentinel-2 image')
# Create a Sentinel-2 image composite
image = geemap.dynamic_world_s2(region, start_date, end_date, clip=True)
vis_params = {'bands': ['B8', 'B4', 'B3'], 'min': 0, 'max': 3000}
Map.addLayer(image, vis_params, 'Sentinel-2 image')
In [ ]:
Copied!
# Create Dynamic World land cover composite
landcover = geemap.dynamic_world(
region, start_date, end_date, clip=True, return_type='class'
)
dwVisParams = {
"min": 0,
"max": 8,
"palette": [
"#419BDF",
"#397D49",
"#88B053",
"#7A87C6",
"#E49635",
"#DFC35A",
"#C4281B",
"#A59B8F",
"#B39FE1",
],
}
Map.addLayer(landcover, dwVisParams, 'Land Cover Class')
Map
# Create Dynamic World land cover composite
landcover = geemap.dynamic_world(
region, start_date, end_date, clip=True, return_type='class'
)
dwVisParams = {
"min": 0,
"max": 8,
"palette": [
"#419BDF",
"#397D49",
"#88B053",
"#7A87C6",
"#E49635",
"#DFC35A",
"#C4281B",
"#A59B8F",
"#B39FE1",
],
}
Map.addLayer(landcover, dwVisParams, 'Land Cover Class')
Map
In [ ]:
Copied!
Map.add_legend(title='Dynamic World Land Cover', builtin_legend='Dynamic_World')
Map.add_legend(title='Dynamic World Land Cover', builtin_legend='Dynamic_World')
In [ ]:
Copied!
landcover = geemap.dynamic_world(
region, start_date, end_date, clip=True, return_type='visualize'
)
Map.addLayer(landcover, {}, 'Land Cover Visualize')
landcover = geemap.dynamic_world(
region, start_date, end_date, clip=True, return_type='visualize'
)
Map.addLayer(landcover, {}, 'Land Cover Visualize')
In [ ]:
Copied!
landcover = geemap.dynamic_world(
region, start_date, end_date, clip=True, return_type='probability'
)
Map.addLayer(landcover, {}, 'Land Cover Probability')
landcover = geemap.dynamic_world(
region, start_date, end_date, clip=True, return_type='probability'
)
Map.addLayer(landcover, {}, 'Land Cover Probability')
In [ ]:
Copied!
# Create Dynamic World land cover composite
landcover = geemap.dynamic_world(
region, start_date, end_date, clip=True, return_type='hillshade'
)
Map.addLayer(landcover, {}, 'Land Cover')
# Create Dynamic World land cover composite
landcover = geemap.dynamic_world(
region, start_date, end_date, clip=True, return_type='hillshade'
)
Map.addLayer(landcover, {}, 'Land Cover')
Comparing Global Land Cover Data Products¶
Visualizing ESA Global Land Cover.
In [ ]:
Copied!
start_date = '2021-01-01'
end_date = '2022-01-01'
region = ee.Geometry.BBox(-179, -89, 179, 89)
start_date = '2021-01-01'
end_date = '2022-01-01'
region = ee.Geometry.BBox(-179, -89, 179, 89)
In [ ]:
Copied!
Map = geemap.Map()
esa = ee.ImageCollection("ESA/WorldCover/v200").first()
esa_vis = {'bands': ['Map']}
Map.addLayer(esa, esa_vis, "ESA LC 2021")
Map.add_legend(title="ESA Land Cover", builtin_legend='ESA_WorldCover')
Map
Map = geemap.Map()
esa = ee.ImageCollection("ESA/WorldCover/v200").first()
esa_vis = {'bands': ['Map']}
Map.addLayer(esa, esa_vis, "ESA LC 2021")
Map.add_legend(title="ESA Land Cover", builtin_legend='ESA_WorldCover')
Map
Visualizing ESRI Global Land Cover.
In [ ]:
Copied!
Map = geemap.Map()
esri = (
ee.ImageCollection(
"projects/sat-io/open-datasets/landcover/ESRI_Global-LULC_10m_TS"
)
.filterDate(start_date, end_date)
.mosaic()
)
esri_vis = {
'min': 1,
'max': 11,
'palette': [
"#1A5BAB",
"#358221",
"#000000",
"#87D19E",
"#FFDB5C",
"#000000",
"#ED022A",
"#EDE9E4",
"#F2FAFF",
"#C8C8C8",
"#C6AD8D",
],
}
Map.addLayer(esri, esri_vis, "ESRI LC 2021")
Map.add_legend(title="ESRI Land Cover", builtin_legend='ESRI_LandCover_TS')
Map
Map = geemap.Map()
esri = (
ee.ImageCollection(
"projects/sat-io/open-datasets/landcover/ESRI_Global-LULC_10m_TS"
)
.filterDate(start_date, end_date)
.mosaic()
)
esri_vis = {
'min': 1,
'max': 11,
'palette': [
"#1A5BAB",
"#358221",
"#000000",
"#87D19E",
"#FFDB5C",
"#000000",
"#ED022A",
"#EDE9E4",
"#F2FAFF",
"#C8C8C8",
"#C6AD8D",
],
}
Map.addLayer(esri, esri_vis, "ESRI LC 2021")
Map.add_legend(title="ESRI Land Cover", builtin_legend='ESRI_LandCover_TS')
Map
In [ ]:
Copied!
Map = geemap.Map()
dw_class = geemap.dynamic_world(region, start_date, end_date, return_type='class')
dw = geemap.dynamic_world(region, start_date, end_date, return_type='hillshade')
dw_vis = {
"min": 0,
"max": 8,
"palette": [
"#419BDF",
"#397D49",
"#88B053",
"#7A87C6",
"#E49635",
"#DFC35A",
"#C4281B",
"#A59B8F",
"#B39FE1",
],
}
Map.addLayer(dw_class, dw_vis, 'DW LC 2021', False)
Map.addLayer(dw, {}, 'DW LC Hillshade')
Map.add_legend(title="Dynamic World Land Cover", builtin_legend='Dynamic_World')
Map.setCenter(-88.9088, 43.0006, 12)
Map
Map = geemap.Map()
dw_class = geemap.dynamic_world(region, start_date, end_date, return_type='class')
dw = geemap.dynamic_world(region, start_date, end_date, return_type='hillshade')
dw_vis = {
"min": 0,
"max": 8,
"palette": [
"#419BDF",
"#397D49",
"#88B053",
"#7A87C6",
"#E49635",
"#DFC35A",
"#C4281B",
"#A59B8F",
"#B39FE1",
],
}
Map.addLayer(dw_class, dw_vis, 'DW LC 2021', False)
Map.addLayer(dw, {}, 'DW LC Hillshade')
Map.add_legend(title="Dynamic World Land Cover", builtin_legend='Dynamic_World')
Map.setCenter(-88.9088, 43.0006, 12)
Map
Comparing Dynamic World and ESA Land Cover.
In [ ]:
Copied!
Map = geemap.Map(center=[39.3322, -106.7349], zoom=10)
left_layer = geemap.ee_tile_layer(esa, esa_vis, "ESA LC")
right_layer = geemap.ee_tile_layer(dw, {}, "Dynamic World LC")
Map.split_map(left_layer, right_layer)
Map.add_legend(
title="ESA Land Cover", builtin_legend='ESA_WorldCover', position='bottomleft'
)
Map.add_legend(
title="Dynamic World Land Cover",
builtin_legend='Dynamic_World',
position='bottomright',
)
Map.setCenter(-88.9088, 43.0006, 12)
Map
Map = geemap.Map(center=[39.3322, -106.7349], zoom=10)
left_layer = geemap.ee_tile_layer(esa, esa_vis, "ESA LC")
right_layer = geemap.ee_tile_layer(dw, {}, "Dynamic World LC")
Map.split_map(left_layer, right_layer)
Map.add_legend(
title="ESA Land Cover", builtin_legend='ESA_WorldCover', position='bottomleft'
)
Map.add_legend(
title="Dynamic World Land Cover",
builtin_legend='Dynamic_World',
position='bottomright',
)
Map.setCenter(-88.9088, 43.0006, 12)
Map
Comparing Dynamic World with ESRI Land Cover.
In [ ]:
Copied!
Map = geemap.Map(center=[-89.3998, 43.0886], zoom=10)
left_layer = geemap.ee_tile_layer(esri, esri_vis, "ESRI LC")
right_layer = geemap.ee_tile_layer(dw, {}, "Dynamic World LC")
Map.split_map(left_layer, right_layer)
Map.add_legend(
title="ESRI Land Cover", builtin_legend='ESRI_LandCover_TS', position='bottomleft'
)
Map.add_legend(
title="Dynamic World Land Cover",
builtin_legend='Dynamic_World',
position='bottomright',
)
Map.setCenter(-88.9088, 43.0006, 12)
Map
Map = geemap.Map(center=[-89.3998, 43.0886], zoom=10)
left_layer = geemap.ee_tile_layer(esri, esri_vis, "ESRI LC")
right_layer = geemap.ee_tile_layer(dw, {}, "Dynamic World LC")
Map.split_map(left_layer, right_layer)
Map.add_legend(
title="ESRI Land Cover", builtin_legend='ESRI_LandCover_TS', position='bottomleft'
)
Map.add_legend(
title="Dynamic World Land Cover",
builtin_legend='Dynamic_World',
position='bottomright',
)
Map.setCenter(-88.9088, 43.0006, 12)
Map
Creating Dynamic World Time Series¶
In [ ]:
Copied!
Map = geemap.Map()
Map.add_basemap('HYBRID')
Map
Map = geemap.Map()
Map.add_basemap('HYBRID')
Map
In [ ]:
Copied!
# Set the region of interest by simply drawing a polygon on the map
region = Map.user_roi
if region is None:
region = ee.Geometry.BBox(-89.7088, 42.9006, -89.0647, 43.2167)
Map.addLayer(region, {}, 'Region')
Map.centerObject(region)
# Set the region of interest by simply drawing a polygon on the map
region = Map.user_roi
if region is None:
region = ee.Geometry.BBox(-89.7088, 42.9006, -89.0647, 43.2167)
Map.addLayer(region, {}, 'Region')
Map.centerObject(region)
In [ ]:
Copied!
# Set the date range
start_date = '2017-01-01'
end_date = '2023-01-01'
# Set the date range
start_date = '2017-01-01'
end_date = '2023-01-01'
In [ ]:
Copied!
images = geemap.dynamic_world_timeseries(
region, start_date, end_date, frequency='year', return_type="class"
)
images = geemap.dynamic_world_timeseries(
region, start_date, end_date, frequency='year', return_type="class"
)
In [ ]:
Copied!
vis_params = {
"min": 0,
"max": 8,
"palette": [
"#419BDF",
"#397D49",
"#88B053",
"#7A87C6",
"#E49635",
"#DFC35A",
"#C4281B",
"#A59B8F",
"#B39FE1",
],
}
Map.addLayer(images.first(), vis_params, 'First image')
Map.add_legend(title="Dynamic World Land Cover", builtin_legend='Dynamic_World')
Map
vis_params = {
"min": 0,
"max": 8,
"palette": [
"#419BDF",
"#397D49",
"#88B053",
"#7A87C6",
"#E49635",
"#DFC35A",
"#C4281B",
"#A59B8F",
"#B39FE1",
],
}
Map.addLayer(images.first(), vis_params, 'First image')
Map.add_legend(title="Dynamic World Land Cover", builtin_legend='Dynamic_World')
Map
In [ ]:
Copied!
Map.ts_inspector(images, left_vis=vis_params, date_format='YYYY')
Map.ts_inspector(images, left_vis=vis_params, date_format='YYYY')
In [ ]:
Copied!
Map = geemap.Map()
Map.add_basemap('HYBRID')
Map.centerObject(region)
images = geemap.dynamic_world_timeseries(
region, start_date, end_date, frequency='year', return_type="hillshade"
)
Map.ts_inspector(images, date_format='YYYY')
Map.add_legend(title="Dynamic World Land Cover", builtin_legend='Dynamic_World')
Map
Map = geemap.Map()
Map.add_basemap('HYBRID')
Map.centerObject(region)
images = geemap.dynamic_world_timeseries(
region, start_date, end_date, frequency='year', return_type="hillshade"
)
Map.ts_inspector(images, date_format='YYYY')
Map.add_legend(title="Dynamic World Land Cover", builtin_legend='Dynamic_World')
Map
Analyzing Global Land Cover Data¶
In [ ]:
Copied!
Map = geemap.Map()
dataset = ee.ImageCollection("ESA/WorldCover/v200").first()
Map.addLayer(dataset, {'bands': ['Map']}, 'ESA Land Cover')
Map.add_legend(title='ESA Land Cover Type', builtin_legend='ESA_WorldCover')
Map
Map = geemap.Map()
dataset = ee.ImageCollection("ESA/WorldCover/v200").first()
Map.addLayer(dataset, {'bands': ['Map']}, 'ESA Land Cover')
Map.add_legend(title='ESA Land Cover Type', builtin_legend='ESA_WorldCover')
Map
In [ ]:
Copied!
df = geemap.image_area_by_group(
dataset, scale=1000, denominator=1e6, decimal_places=4, verbose=True
)
df
df = geemap.image_area_by_group(
dataset, scale=1000, denominator=1e6, decimal_places=4, verbose=True
)
df
In [ ]:
Copied!
df.to_csv('esa2021.csv')
df.to_csv('esa2021.csv')
In [ ]:
Copied!
esa_dict = {
"10 Trees": "006400",
"20 Shrubland": "ffbb22",
"30 Grassland": "ffff4c",
"40 Cropland": "f096ff",
"50 Built-up": "fa0000",
"60 Barren / sparse vegetation": "b4b4b4",
"70 Snow and ice": "f0f0f0",
"80 Open water": "0064c8",
"90 Herbaceous wetland": "0096a0",
"95 Mangroves": "00cf75",
"100 Moss and lichen": "fae6a0",
}
classes = list(esa_dict.keys())
classes
esa_dict = {
"10 Trees": "006400",
"20 Shrubland": "ffbb22",
"30 Grassland": "ffff4c",
"40 Cropland": "f096ff",
"50 Built-up": "fa0000",
"60 Barren / sparse vegetation": "b4b4b4",
"70 Snow and ice": "f0f0f0",
"80 Open water": "0064c8",
"90 Herbaceous wetland": "0096a0",
"95 Mangroves": "00cf75",
"100 Moss and lichen": "fae6a0",
}
classes = list(esa_dict.keys())
classes
In [ ]:
Copied!
df['class'] = classes
df['class'] = classes
In [ ]:
Copied!
geemap.bar_chart(
df,
x='class',
y='area',
x_label='Land Cover Type',
y_label='Area (km2)',
)
geemap.bar_chart(
df,
x='class',
y='area',
x_label='Land Cover Type',
y_label='Area (km2)',
)
In [ ]:
Copied!
geemap.pie_chart(df, names='class', values='area', height=500)
geemap.pie_chart(df, names='class', values='area', height=500)
In [ ]:
Copied!
countries = ee.FeatureCollection(geemap.examples.get_ee_path('countries'))
Map.addLayer(countries, {}, 'Countries')
Map
countries = ee.FeatureCollection(geemap.examples.get_ee_path('countries'))
Map.addLayer(countries, {}, 'Countries')
Map
In [ ]:
Copied!
geemap.zonal_stats_by_group(
dataset,
countries,
'esa_2021_country.csv',
statistics_type='SUM',
denominator=1e6,
scale=1000,
)
geemap.zonal_stats_by_group(
dataset,
countries,
'esa_2021_country.csv',
statistics_type='SUM',
denominator=1e6,
scale=1000,
)
In [ ]:
Copied!
geemap.bar_chart(
'esa_2021_country.csv',
x='NAME',
y='Class_10',
max_rows=30,
x_label='Country',
y_label='Forest Area (km2)',
)
geemap.bar_chart(
'esa_2021_country.csv',
x='NAME',
y='Class_10',
max_rows=30,
x_label='Country',
y_label='Forest Area (km2)',
)
In [ ]:
Copied!
geemap.bar_chart(
'esa_2021_country.csv',
x='NAME',
y='Class_40',
max_rows=30,
x_label='Country',
y_label='Cropland Area (km2)',
)
geemap.bar_chart(
'esa_2021_country.csv',
x='NAME',
y='Class_40',
max_rows=30,
x_label='Country',
y_label='Cropland Area (km2)',
)
In [ ]:
Copied!
geemap.bar_chart(
'esa_2021_country.csv',
x='NAME',
y=['Class_10', 'Class_20', 'Class_30', 'Class_40'],
max_rows=10,
x_label='Country',
)
geemap.bar_chart(
'esa_2021_country.csv',
x='NAME',
y=['Class_10', 'Class_20', 'Class_30', 'Class_40'],
max_rows=10,
x_label='Country',
)
In [ ]:
Copied!
geemap.pie_chart(
'esa_2021_country.csv', names='NAME', values='Class_10', max_rows=30, height=500
)
geemap.pie_chart(
'esa_2021_country.csv', names='NAME', values='Class_10', max_rows=30, height=500
)
In [ ]:
Copied!
geemap.pie_chart(
'esa_2021_country.csv', names='NAME', values='Class_40', max_rows=30, height=500
)
geemap.pie_chart(
'esa_2021_country.csv', names='NAME', values='Class_40', max_rows=30, height=500
)
Forest cover change analysis¶
In [ ]:
Copied!
Map = geemap.Map()
Map.add_basemap('HYBRID')
Map = geemap.Map()
Map.add_basemap('HYBRID')
In [ ]:
Copied!
dataset = ee.Image('UMD/hansen/global_forest_change_2021_v1_9')
dataset = ee.Image('UMD/hansen/global_forest_change_2021_v1_9')
In [ ]:
Copied!
dataset.bandNames().getInfo()
dataset.bandNames().getInfo()
In [ ]:
Copied!
first_bands = ['first_b50', 'first_b40', 'first_b30']
first_image = dataset.select(first_bands)
Map.addLayer(first_image, {'bands': first_bands, 'gamma': 1.5}, 'Year 2000 Bands 5/4/3')
Map
first_bands = ['first_b50', 'first_b40', 'first_b30']
first_image = dataset.select(first_bands)
Map.addLayer(first_image, {'bands': first_bands, 'gamma': 1.5}, 'Year 2000 Bands 5/4/3')
Map
In [ ]:
Copied!
last_bands = ['last_b50', 'last_b40', 'last_b30']
last_image = dataset.select(last_bands)
Map.addLayer(last_image, {'bands': last_bands, 'gamma': 1.5}, 'Year 2021 Bands 5/4/3')
last_bands = ['last_b50', 'last_b40', 'last_b30']
last_image = dataset.select(last_bands)
Map.addLayer(last_image, {'bands': last_bands, 'gamma': 1.5}, 'Year 2021 Bands 5/4/3')
In [ ]:
Copied!
treecover = dataset.select(['treecover2000'])
treeCoverVisParam = {'min': 0, 'max': 100, 'palette': ['black', 'green']}
name1 = 'Tree cover (%)'
Map.addLayer(treecover, treeCoverVisParam, name1)
Map.add_colorbar(treeCoverVisParam, label=name1, layer_name=name1)
Map
treecover = dataset.select(['treecover2000'])
treeCoverVisParam = {'min': 0, 'max': 100, 'palette': ['black', 'green']}
name1 = 'Tree cover (%)'
Map.addLayer(treecover, treeCoverVisParam, name1)
Map.add_colorbar(treeCoverVisParam, label=name1, layer_name=name1)
Map
In [ ]:
Copied!
threshold = 10
treecover_bin = treecover.gte(threshold).selfMask()
treeVisParam = {'palette': ['green']}
Map.addLayer(treecover_bin, treeVisParam, 'Tree cover bin')
threshold = 10
treecover_bin = treecover.gte(threshold).selfMask()
treeVisParam = {'palette': ['green']}
Map.addLayer(treecover_bin, treeVisParam, 'Tree cover bin')
In [ ]:
Copied!
treeloss_year = dataset.select(['lossyear'])
treeLossVisParam = {'min': 0, 'max': 21, 'palette': ['yellow', 'red']}
layer_name = 'Tree loss year'
Map.addLayer(treeloss_year, treeLossVisParam, layer_name)
Map.add_colorbar(treeLossVisParam, label=layer_name, layer_name=layer_name)
treeloss_year = dataset.select(['lossyear'])
treeLossVisParam = {'min': 0, 'max': 21, 'palette': ['yellow', 'red']}
layer_name = 'Tree loss year'
Map.addLayer(treeloss_year, treeLossVisParam, layer_name)
Map.add_colorbar(treeLossVisParam, label=layer_name, layer_name=layer_name)
In [ ]:
Copied!
treeloss = dataset.select(['loss']).selfMask()
Map.addLayer(treeloss, {'palette': 'red'}, 'Tree loss')
Map
treeloss = dataset.select(['loss']).selfMask()
Map.addLayer(treeloss, {'palette': 'red'}, 'Tree loss')
Map
In [ ]:
Copied!
treegain = dataset.select(['gain']).selfMask()
Map.addLayer(treegain, {'palette': 'yellow'}, 'Tree gain')
Map
treegain = dataset.select(['gain']).selfMask()
Map.addLayer(treegain, {'palette': 'yellow'}, 'Tree gain')
Map
In [ ]:
Copied!
countries = ee.FeatureCollection(geemap.examples.get_ee_path('countries'))
countries = ee.FeatureCollection(geemap.examples.get_ee_path('countries'))
In [ ]:
Copied!
geemap.ee_to_df(countries)
geemap.ee_to_df(countries)
In [ ]:
Copied!
style = {'color': '#ffff0088', 'fillColor': '#00000000'}
Map.addLayer(countries.style(**style), {}, 'Countries')
style = {'color': '#ffff0088', 'fillColor': '#00000000'}
Map.addLayer(countries.style(**style), {}, 'Countries')
Forest area analysis
In [ ]:
Copied!
geemap.zonal_stats_by_group(
treecover_bin,
countries,
'forest_cover.csv',
statistics_type='SUM',
denominator=1e6,
scale=1000,
)
geemap.zonal_stats_by_group(
treecover_bin,
countries,
'forest_cover.csv',
statistics_type='SUM',
denominator=1e6,
scale=1000,
)
In [ ]:
Copied!
geemap.pie_chart(
'forest_cover.csv', names='NAME', values='Class_sum', max_rows=20, height=600
)
geemap.pie_chart(
'forest_cover.csv', names='NAME', values='Class_sum', max_rows=20, height=600
)
In [ ]:
Copied!
geemap.bar_chart(
'forest_cover.csv',
x='NAME',
y='Class_sum',
max_rows=20,
x_label='Country',
y_label='Forest area (km2)',
)
geemap.bar_chart(
'forest_cover.csv',
x='NAME',
y='Class_sum',
max_rows=20,
x_label='Country',
y_label='Forest area (km2)',
)
Forest loss analysis.
In [ ]:
Copied!
geemap.zonal_stats_by_group(
treeloss,
countries,
'treeloss.csv',
statistics_type='SUM',
denominator=1e6,
scale=1000,
)
geemap.zonal_stats_by_group(
treeloss,
countries,
'treeloss.csv',
statistics_type='SUM',
denominator=1e6,
scale=1000,
)
In [ ]:
Copied!
geemap.pie_chart(
'treeloss.csv', names='NAME', values='Class_sum', max_rows=20, height=600
)
geemap.pie_chart(
'treeloss.csv', names='NAME', values='Class_sum', max_rows=20, height=600
)
In [ ]:
Copied!
geemap.bar_chart(
'treeloss.csv',
x='NAME',
y='Class_sum',
max_rows=20,
x_label='Country',
y_label='Forest loss area (km2)',
)
geemap.bar_chart(
'treeloss.csv',
x='NAME',
y='Class_sum',
max_rows=20,
x_label='Country',
y_label='Forest loss area (km2)',
)
Surface water change analysis¶
Surface water occurrence¶
In [ ]:
Copied!
dataset = ee.Image('JRC/GSW1_3/GlobalSurfaceWater')
dataset.bandNames().getInfo()
dataset = ee.Image('JRC/GSW1_3/GlobalSurfaceWater')
dataset.bandNames().getInfo()
In [ ]:
Copied!
Map = geemap.Map()
Map.add_basemap('HYBRID')
image = dataset.select(['occurrence'])
region = ee.Geometry.BBox(-99.957, 46.8947, -99.278, 47.1531)
vis_params = {'min': 0.0, 'max': 100.0, 'palette': ['ffffff', 'ffbbbb', '0000ff']}
Map.addLayer(image, vis_params, 'Occurrence')
Map.addLayer(region, {}, 'ROI', True, 0.5)
Map.centerObject(region)
Map.add_colorbar(vis_params, label='Water occurrence (%)', layer_name='Occurrence')
Map
Map = geemap.Map()
Map.add_basemap('HYBRID')
image = dataset.select(['occurrence'])
region = ee.Geometry.BBox(-99.957, 46.8947, -99.278, 47.1531)
vis_params = {'min': 0.0, 'max': 100.0, 'palette': ['ffffff', 'ffbbbb', '0000ff']}
Map.addLayer(image, vis_params, 'Occurrence')
Map.addLayer(region, {}, 'ROI', True, 0.5)
Map.centerObject(region)
Map.add_colorbar(vis_params, label='Water occurrence (%)', layer_name='Occurrence')
Map
In [ ]:
Copied!
hist = geemap.image_histogram(
image,
region,
scale=30,
x_label='Frequency',
y_label='Pixel Count',
title='Water Occurrence',
return_df=False,
)
hist
hist = geemap.image_histogram(
image,
region,
scale=30,
x_label='Frequency',
y_label='Pixel Count',
title='Water Occurrence',
return_df=False,
)
hist
Surace water monthly history¶
In [ ]:
Copied!
dataset = ee.ImageCollection('JRC/GSW1_3/MonthlyHistory')
size = dataset.size()
print(size.getInfo())
dataset = ee.ImageCollection('JRC/GSW1_3/MonthlyHistory')
size = dataset.size()
print(size.getInfo())
In [ ]:
Copied!
# dataset.aggregate_array("system:index").getInfo()
# dataset.aggregate_array("system:index").getInfo()
In [ ]:
Copied!
Map = geemap.Map()
image = dataset.filterDate('2020-08-01', '2020-09-01').first()
region = ee.Geometry.BBox(-99.957, 46.8947, -99.278, 47.1531)
vis_params = {'min': 0.0, 'max': 2.0, 'palette': ['ffffff', 'fffcb8', '0905ff']}
Map.addLayer(image, vis_params, 'Water')
Map.addLayer(region, {}, 'ROI', True, 0.5)
Map.centerObject(region)
Map
Map = geemap.Map()
image = dataset.filterDate('2020-08-01', '2020-09-01').first()
region = ee.Geometry.BBox(-99.957, 46.8947, -99.278, 47.1531)
vis_params = {'min': 0.0, 'max': 2.0, 'palette': ['ffffff', 'fffcb8', '0905ff']}
Map.addLayer(image, vis_params, 'Water')
Map.addLayer(region, {}, 'ROI', True, 0.5)
Map.centerObject(region)
Map
In [ ]:
Copied!
df = geemap.jrc_hist_monthly_history(
region=region, scale=30, frequency='month', denominator=1e4, return_df=True
)
df
df = geemap.jrc_hist_monthly_history(
region=region, scale=30, frequency='month', denominator=1e4, return_df=True
)
df
In [ ]:
Copied!
geemap.jrc_hist_monthly_history(
region=region, scale=30, frequency='month', denominator=1e4, y_label='Area (ha)'
)
geemap.jrc_hist_monthly_history(
region=region, scale=30, frequency='month', denominator=1e4, y_label='Area (ha)'
)
In [ ]:
Copied!
geemap.jrc_hist_monthly_history(
region=region,
start_month=6,
end_month=9,
scale=30,
frequency='month',
y_label='Area (ha)',
)
geemap.jrc_hist_monthly_history(
region=region,
start_month=6,
end_month=9,
scale=30,
frequency='month',
y_label='Area (ha)',
)
In [ ]:
Copied!
geemap.jrc_hist_monthly_history(
region=region,
start_month=6,
end_month=9,
scale=30,
frequency='month',
y_label='Area (ha)',
color='month',
)
geemap.jrc_hist_monthly_history(
region=region,
start_month=6,
end_month=9,
scale=30,
frequency='month',
y_label='Area (ha)',
color='month',
)
In [ ]:
Copied!
geemap.jrc_hist_monthly_history(
region=region,
start_month=6,
end_month=9,
scale=30,
frequency='year',
reducer='mean',
y_label='Area (ha)',
)
geemap.jrc_hist_monthly_history(
region=region,
start_month=6,
end_month=9,
scale=30,
frequency='year',
reducer='mean',
y_label='Area (ha)',
)
In [ ]:
Copied!
geemap.jrc_hist_monthly_history(
region=region,
start_month=6,
end_month=9,
scale=30,
frequency='year',
reducer='max',
y_label='Area (ha)',
)
geemap.jrc_hist_monthly_history(
region=region,
start_month=6,
end_month=9,
scale=30,
frequency='year',
reducer='max',
y_label='Area (ha)',
)
Last update:
2023-04-06
Created: 2022-11-19
Created: 2022-11-19