24 publish maps
Uncomment the following line to install geemap if needed.
In [ ]:
Copied!
# !pip install geemap
# !pip install geemap
To follow this tutorial, you will need to sign up for an account with https://datapane.com, then install and authenticate the datapane
Python package. More information can be found here.
pip install datapane
datapane login
datapane ping
In [ ]:
Copied!
import ee
import geemap.foliumap as geemap
import ee
import geemap.foliumap as geemap
In [ ]:
Copied!
# Create a map centered at (lat, lon).
Map = geemap.Map(center=[40, -100], zoom=4)
# Use an elevation dataset and terrain functions to create
# a custom visualization of topography.
# Load a global elevation image.
elev = ee.Image('USGS/GMTED2010')
# Zoom to an area of interest.
Map.setCenter(-121.069, 50.709, 6)
# Add the elevation to the map.
Map.addLayer(elev, {}, 'elev')
# Use the terrain algorithms to compute a hillshade with 8-bit values.
shade = ee.Terrain.hillshade(elev)
Map.addLayer(shade, {}, 'hillshade', False)
# Create a "sea" variable to be used for cartographic purposes
sea = elev.lte(0)
Map.addLayer(sea.mask(sea), {'palette': '000022'}, 'sea', False)
# Create a custom elevation palette from hex strings.
elevationPalette = ['006600', '002200', 'fff700', 'ab7634', 'c4d0ff', 'ffffff']
# Use these visualization parameters, customized by location.
visParams = {'min': 1, 'max': 3000, 'palette': elevationPalette}
# Create a mosaic of the sea and the elevation data
visualized = ee.ImageCollection(
[
# Mask the elevation to get only land
elev.mask(sea.Not()).visualize(**visParams),
# Use the sea mask directly to display sea.
sea.mask(sea).visualize(**{'palette': '000022'}),
]
).mosaic()
# Note that the visualization image doesn't require visualization parameters.
Map.addLayer(visualized, {}, 'elev palette', False)
# Convert the visualized elevation to HSV, first converting to [0, 1] data.
hsv = visualized.divide(255).rgbToHsv()
# Select only the hue and saturation bands.
hs = hsv.select(0, 1)
# Convert the hillshade to [0, 1] data, as expected by the HSV algorithm.
v = shade.divide(255)
# Create a visualization image by converting back to RGB from HSV.
# Note the cast to byte in order to export the image correctly.
rgb = hs.addBands(v).hsvToRgb().multiply(255).byte()
Map.addLayer(rgb, {}, 'styled')
states = ee.FeatureCollection('TIGER/2018/States')
Map.addLayer(ee.Image().paint(states, 0, 2), {}, "US States")
# Create a map centered at (lat, lon).
Map = geemap.Map(center=[40, -100], zoom=4)
# Use an elevation dataset and terrain functions to create
# a custom visualization of topography.
# Load a global elevation image.
elev = ee.Image('USGS/GMTED2010')
# Zoom to an area of interest.
Map.setCenter(-121.069, 50.709, 6)
# Add the elevation to the map.
Map.addLayer(elev, {}, 'elev')
# Use the terrain algorithms to compute a hillshade with 8-bit values.
shade = ee.Terrain.hillshade(elev)
Map.addLayer(shade, {}, 'hillshade', False)
# Create a "sea" variable to be used for cartographic purposes
sea = elev.lte(0)
Map.addLayer(sea.mask(sea), {'palette': '000022'}, 'sea', False)
# Create a custom elevation palette from hex strings.
elevationPalette = ['006600', '002200', 'fff700', 'ab7634', 'c4d0ff', 'ffffff']
# Use these visualization parameters, customized by location.
visParams = {'min': 1, 'max': 3000, 'palette': elevationPalette}
# Create a mosaic of the sea and the elevation data
visualized = ee.ImageCollection(
[
# Mask the elevation to get only land
elev.mask(sea.Not()).visualize(**visParams),
# Use the sea mask directly to display sea.
sea.mask(sea).visualize(**{'palette': '000022'}),
]
).mosaic()
# Note that the visualization image doesn't require visualization parameters.
Map.addLayer(visualized, {}, 'elev palette', False)
# Convert the visualized elevation to HSV, first converting to [0, 1] data.
hsv = visualized.divide(255).rgbToHsv()
# Select only the hue and saturation bands.
hs = hsv.select(0, 1)
# Convert the hillshade to [0, 1] data, as expected by the HSV algorithm.
v = shade.divide(255)
# Create a visualization image by converting back to RGB from HSV.
# Note the cast to byte in order to export the image correctly.
rgb = hs.addBands(v).hsvToRgb().multiply(255).byte()
Map.addLayer(rgb, {}, 'styled')
states = ee.FeatureCollection('TIGER/2018/States')
Map.addLayer(ee.Image().paint(states, 0, 2), {}, "US States")
In [ ]:
Copied!
# Display the map.
Map
# Display the map.
Map
In [ ]:
Copied!
Map.publish(
name='Terrain Visualization',
description='A folium map with Earth Engine data layers',
)
Map.publish(
name='Terrain Visualization',
description='A folium map with Earth Engine data layers',
)
Last update:
2023-04-06
Created: 2020-07-05
Created: 2020-07-05