Skip to content

map_widgets module

Various ipywidgets that can be added to a map.

Colorbar (Output)

A matplotlib colorbar widget that can be added to the map.

Source code in geemap/map_widgets.py
class Colorbar(ipywidgets.Output):
    """A matplotlib colorbar widget that can be added to the map."""

    def __init__(
        self,
        vis_params=None,
        cmap="gray",
        discrete=False,
        label=None,
        orientation="horizontal",
        transparent_bg=False,
        font_size=9,
        axis_off=False,
        max_width=None,
        **kwargs,
    ):
        """Add a matplotlib colorbar to the map.

        Args:
            vis_params (dict): Visualization parameters as a dictionary. See https://developers.google.com/earth-engine/guides/image_visualization for options.
            cmap (str, optional): Matplotlib colormap. Defaults to "gray". See https://matplotlib.org/3.3.4/tutorials/colors/colormaps.html#sphx-glr-tutorials-colors-colormaps-py for options.
            discrete (bool, optional): Whether to create a discrete colorbar. Defaults to False.
            label (str, optional): Label for the colorbar. Defaults to None.
            orientation (str, optional): Orientation of the colorbar, such as "vertical" and "horizontal". Defaults to "horizontal".
            transparent_bg (bool, optional): Whether to use transparent background. Defaults to False.
            font_size (int, optional): Font size for the colorbar. Defaults to 9.
            axis_off (bool, optional): Whether to turn off the axis. Defaults to False.
            max_width (str, optional): Maximum width of the colorbar in pixels. Defaults to None.

        Raises:
            TypeError: If the vis_params is not a dictionary.
            ValueError: If the orientation is not either horizontal or vertical.
            ValueError: If the provided min value is not scalar type.
            ValueError: If the provided max value is not scalar type.
            ValueError: If the provided opacity value is not scalar type.
            ValueError: If cmap or palette is not provided.
        """

        import matplotlib  # pylint: disable=import-outside-toplevel
        import numpy  # pylint: disable=import-outside-toplevel

        if max_width is None:
            if orientation == "horizontal":
                max_width = "270px"
            else:
                max_width = "100px"

        if isinstance(vis_params, (list, tuple)):
            vis_params = {"palette": list(vis_params)}
        elif not vis_params:
            vis_params = {}

        if not isinstance(vis_params, dict):
            raise TypeError("The vis_params must be a dictionary.")

        if isinstance(kwargs.get("colors"), (list, tuple)):
            vis_params["palette"] = list(kwargs["colors"])

        width, height = self._get_dimensions(orientation, kwargs)

        vmin = vis_params.get("min", kwargs.pop("vmin", 0))
        if type(vmin) not in (int, float):
            raise TypeError("The provided min value must be scalar type.")

        vmax = vis_params.get("max", kwargs.pop("mvax", 1))
        if type(vmax) not in (int, float):
            raise TypeError("The provided max value must be scalar type.")

        alpha = vis_params.get("opacity", kwargs.pop("alpha", 1))
        if type(alpha) not in (int, float):
            raise TypeError("The provided opacity or alpha value must be type scalar.")

        if "palette" in vis_params.keys():
            hexcodes = common.to_hex_colors(common.check_cmap(vis_params["palette"]))
            if discrete:
                cmap = matplotlib.colors.ListedColormap(hexcodes)
                linspace = numpy.linspace(vmin, vmax, cmap.N + 1)
                norm = matplotlib.colors.BoundaryNorm(linspace, cmap.N)
            else:
                cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
                    "custom", hexcodes, N=256
                )
                norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)
        elif cmap:
            cmap = matplotlib.pyplot.get_cmap(cmap)
            norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)
        else:
            raise ValueError(
                'cmap keyword or "palette" key in vis_params must be provided.'
            )

        fig, ax = matplotlib.pyplot.subplots(figsize=(width, height))
        cb = matplotlib.colorbar.ColorbarBase(
            ax,
            norm=norm,
            alpha=alpha,
            cmap=cmap,
            orientation=orientation,
            **kwargs,
        )

        label = label or vis_params.get("bands") or kwargs.pop("caption", None)
        if label:
            cb.set_label(label, fontsize=font_size)

        if axis_off:
            ax.set_axis_off()
        ax.tick_params(labelsize=font_size)

        # Set the background color to transparent.
        if transparent_bg:
            fig.patch.set_alpha(0.0)

        super().__init__(layout=ipywidgets.Layout(width=max_width))
        with self:
            self.outputs = ()
            matplotlib.pyplot.show()

    def _get_dimensions(self, orientation, kwargs):
        default_dims = {"horizontal": (3.0, 0.3), "vertical": (0.3, 3.0)}
        if orientation in default_dims:
            default = default_dims[orientation]
            return (
                kwargs.get("width", default[0]),
                kwargs.get("height", default[1]),
            )
        raise ValueError(
            f"orientation must be one of [{', '.join(default_dims.keys())}]."
        )

__init__(self, vis_params=None, cmap='gray', discrete=False, label=None, orientation='horizontal', transparent_bg=False, font_size=9, axis_off=False, max_width=None, **kwargs) special

Add a matplotlib colorbar to the map.

Parameters:

Name Type Description Default
vis_params dict

Visualization parameters as a dictionary. See https://developers.google.com/earth-engine/guides/image_visualization for options.

None
cmap str

Matplotlib colormap. Defaults to "gray". See https://matplotlib.org/3.3.4/tutorials/colors/colormaps.html#sphx-glr-tutorials-colors-colormaps-py for options.

'gray'
discrete bool

Whether to create a discrete colorbar. Defaults to False.

False
label str

Label for the colorbar. Defaults to None.

None
orientation str

Orientation of the colorbar, such as "vertical" and "horizontal". Defaults to "horizontal".

'horizontal'
transparent_bg bool

Whether to use transparent background. Defaults to False.

False
font_size int

Font size for the colorbar. Defaults to 9.

9
axis_off bool

Whether to turn off the axis. Defaults to False.

False
max_width str

Maximum width of the colorbar in pixels. Defaults to None.

None

Exceptions:

Type Description
TypeError

If the vis_params is not a dictionary.

ValueError

If the orientation is not either horizontal or vertical.

ValueError

If the provided min value is not scalar type.

ValueError

If the provided max value is not scalar type.

ValueError

If the provided opacity value is not scalar type.

ValueError

If cmap or palette is not provided.

Source code in geemap/map_widgets.py
def __init__(
    self,
    vis_params=None,
    cmap="gray",
    discrete=False,
    label=None,
    orientation="horizontal",
    transparent_bg=False,
    font_size=9,
    axis_off=False,
    max_width=None,
    **kwargs,
):
    """Add a matplotlib colorbar to the map.

    Args:
        vis_params (dict): Visualization parameters as a dictionary. See https://developers.google.com/earth-engine/guides/image_visualization for options.
        cmap (str, optional): Matplotlib colormap. Defaults to "gray". See https://matplotlib.org/3.3.4/tutorials/colors/colormaps.html#sphx-glr-tutorials-colors-colormaps-py for options.
        discrete (bool, optional): Whether to create a discrete colorbar. Defaults to False.
        label (str, optional): Label for the colorbar. Defaults to None.
        orientation (str, optional): Orientation of the colorbar, such as "vertical" and "horizontal". Defaults to "horizontal".
        transparent_bg (bool, optional): Whether to use transparent background. Defaults to False.
        font_size (int, optional): Font size for the colorbar. Defaults to 9.
        axis_off (bool, optional): Whether to turn off the axis. Defaults to False.
        max_width (str, optional): Maximum width of the colorbar in pixels. Defaults to None.

    Raises:
        TypeError: If the vis_params is not a dictionary.
        ValueError: If the orientation is not either horizontal or vertical.
        ValueError: If the provided min value is not scalar type.
        ValueError: If the provided max value is not scalar type.
        ValueError: If the provided opacity value is not scalar type.
        ValueError: If cmap or palette is not provided.
    """

    import matplotlib  # pylint: disable=import-outside-toplevel
    import numpy  # pylint: disable=import-outside-toplevel

    if max_width is None:
        if orientation == "horizontal":
            max_width = "270px"
        else:
            max_width = "100px"

    if isinstance(vis_params, (list, tuple)):
        vis_params = {"palette": list(vis_params)}
    elif not vis_params:
        vis_params = {}

    if not isinstance(vis_params, dict):
        raise TypeError("The vis_params must be a dictionary.")

    if isinstance(kwargs.get("colors"), (list, tuple)):
        vis_params["palette"] = list(kwargs["colors"])

    width, height = self._get_dimensions(orientation, kwargs)

    vmin = vis_params.get("min", kwargs.pop("vmin", 0))
    if type(vmin) not in (int, float):
        raise TypeError("The provided min value must be scalar type.")

    vmax = vis_params.get("max", kwargs.pop("mvax", 1))
    if type(vmax) not in (int, float):
        raise TypeError("The provided max value must be scalar type.")

    alpha = vis_params.get("opacity", kwargs.pop("alpha", 1))
    if type(alpha) not in (int, float):
        raise TypeError("The provided opacity or alpha value must be type scalar.")

    if "palette" in vis_params.keys():
        hexcodes = common.to_hex_colors(common.check_cmap(vis_params["palette"]))
        if discrete:
            cmap = matplotlib.colors.ListedColormap(hexcodes)
            linspace = numpy.linspace(vmin, vmax, cmap.N + 1)
            norm = matplotlib.colors.BoundaryNorm(linspace, cmap.N)
        else:
            cmap = matplotlib.colors.LinearSegmentedColormap.from_list(
                "custom", hexcodes, N=256
            )
            norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)
    elif cmap:
        cmap = matplotlib.pyplot.get_cmap(cmap)
        norm = matplotlib.colors.Normalize(vmin=vmin, vmax=vmax)
    else:
        raise ValueError(
            'cmap keyword or "palette" key in vis_params must be provided.'
        )

    fig, ax = matplotlib.pyplot.subplots(figsize=(width, height))
    cb = matplotlib.colorbar.ColorbarBase(
        ax,
        norm=norm,
        alpha=alpha,
        cmap=cmap,
        orientation=orientation,
        **kwargs,
    )

    label = label or vis_params.get("bands") or kwargs.pop("caption", None)
    if label:
        cb.set_label(label, fontsize=font_size)

    if axis_off:
        ax.set_axis_off()
    ax.tick_params(labelsize=font_size)

    # Set the background color to transparent.
    if transparent_bg:
        fig.patch.set_alpha(0.0)

    super().__init__(layout=ipywidgets.Layout(width=max_width))
    with self:
        self.outputs = ()
        matplotlib.pyplot.show()

Last update: 2023-07-31
Created: 2023-07-31