geemap module¶
Main module for interactive mapping using Google Earth Engine Python API and ipyleaflet. Keep in mind that Earth Engine functions use both camel case and snake case, such as setOptions(), setCenter(), centerObject(), addLayer(). ipyleaflet functions use snake case, such as add_tile_layer(), add_wms_layer(), add_minimap().
ImageOverlay (ImageOverlay)
¶
ImageOverlay class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url |
str |
http URL or local file path to the image. |
required |
bounds |
tuple |
bounding box of the image in the format of (lower_left(lat, lon), upper_right(lat, lon)), such as ((13, -130), (32, -100)). |
required |
name |
str |
The name of the layer. |
required |
Source code in geemap/geemap.py
class ImageOverlay(ipyleaflet.ImageOverlay):
"""ImageOverlay class.
Args:
url (str): http URL or local file path to the image.
bounds (tuple): bounding box of the image in the format of (lower_left(lat, lon), upper_right(lat, lon)), such as ((13, -130), (32, -100)).
name (str): The name of the layer.
"""
def __init__(self, **kwargs):
from base64 import b64encode
from PIL import Image, ImageSequence
from io import BytesIO
try:
url = kwargs.get("url")
if not url.startswith("http"):
url = os.path.abspath(url)
if not os.path.exists(url):
raise FileNotFoundError("The provided file does not exist.")
ext = os.path.splitext(url)[1][1:] # file extension
image = Image.open(url)
f = BytesIO()
if ext.lower() == "gif":
frames = []
# Loop over each frame in the animated image
for frame in ImageSequence.Iterator(image):
frame = frame.convert("RGBA")
b = BytesIO()
frame.save(b, format="gif")
frame = Image.open(b)
frames.append(frame)
frames[0].save(
f,
format="GIF",
save_all=True,
append_images=frames[1:],
loop=0,
)
else:
image.save(f, ext)
data = b64encode(f.getvalue())
data = data.decode("ascii")
url = "data:image/{};base64,".format(ext) + data
kwargs["url"] = url
except Exception as e:
raise Exception(e)
super().__init__(**kwargs)
Map (Map)
¶
The Map class inherits the ipyleaflet Map class. The arguments you can pass to the Map initialization can be found at https://ipyleaflet.readthedocs.io/en/latest/map_and_basemaps/map.html. By default, the Map will add Google Maps as the basemap. Set add_google_map = False to use OpenStreetMap as the basemap.
Returns:
Type | Description |
---|---|
object |
ipyleaflet map object. |
Source code in geemap/geemap.py
class Map(ipyleaflet.Map):
"""The Map class inherits the ipyleaflet Map class. The arguments you can pass to the Map initialization
can be found at https://ipyleaflet.readthedocs.io/en/latest/map_and_basemaps/map.html.
By default, the Map will add Google Maps as the basemap. Set add_google_map = False
to use OpenStreetMap as the basemap.
Returns:
object: ipyleaflet map object.
"""
def __init__(self, **kwargs):
"""Initialize a map object. The following additional parameters can be passed in addition to the ipyleaflet.Map parameters:
Args:
ee_initialize (bool, optional): Whether or not to initialize ee. Defaults to True.
center (list, optional): Center of the map (lat, lon). Defaults to [20, 0].
zoom (int, optional): Zoom level of the map. Defaults to 2.
height (str, optional): Height of the map. Defaults to "600px".
width (str, optional): Width of the map. Defaults to "100%".
basemap (str, optional): Name of the basemap to add to the map. Defaults to "ROADMAP". Other options include "ROADMAP", "SATELLITE", "TERRAIN".
add_google_map (bool, optional): Whether to add Google Maps to the map. Defaults to True.
sandbox_path (str, optional): The path to a sandbox folder for voila web app. Defaults to None.
lite_mode (bool, optional): Whether to enable lite mode, which only displays zoom control on the map. Defaults to False.
data_ctrl (bool, optional): Whether to add the data control to the map. Defaults to True.
zoom_ctrl (bool, optional): Whether to add the zoom control to the map. Defaults to True.
fullscreen_ctrl (bool, optional): Whether to add the fullscreen control to the map. Defaults to True.
search_ctrl (bool, optional): Whether to add the search control to the map. Defaults to True.
draw_ctrl (bool, optional): Whether to add the draw control to the map. Defaults to True.
scale_ctrl (bool, optional): Whether to add the scale control to the map. Defaults to True.
measure_ctrl (bool, optional): Whether to add the measure control to the map. Defaults to True.
toolbar_ctrl (bool, optional): Whether to add the toolbar control to the map. Defaults to True.
layer_ctrl (bool, optional): Whether to add the layer control to the map. Defaults to False.
attribution_ctrl (bool, optional): Whether to add the attribution control to the map. Defaults to True.
**kwargs: Additional keyword arguments for ipyleaflet.Map.
"""
warnings.filterwarnings("ignore")
# Authenticates Earth Engine and initializes an Earth Engine session
if "ee_initialize" not in kwargs:
kwargs["ee_initialize"] = True
if kwargs["ee_initialize"]:
ee_initialize()
# Default map center center (lat, lon) and zoom level
center = [20, 0]
zoom = 2
# Set map width and height
if "height" not in kwargs:
kwargs["height"] = "600px"
elif isinstance(kwargs["height"], int):
kwargs["height"] = str(kwargs["height"]) + "px"
if "width" in kwargs and isinstance(kwargs["width"], int):
kwargs["width"] = str(kwargs["width"]) + "px"
# Set map center and zoom level
if "center" not in kwargs:
kwargs["center"] = center
if "zoom" not in kwargs:
kwargs["zoom"] = zoom
if "max_zoom" not in kwargs:
kwargs["max_zoom"] = 24
# Enable scroll wheel zoom by default
if "scroll_wheel_zoom" not in kwargs:
kwargs["scroll_wheel_zoom"] = True
# Use any basemap available through the basemap module, such as 'ROADMAP', 'OpenTopoMap'
if "basemap" in kwargs:
kwargs["basemap"] = check_basemap(kwargs["basemap"])
if kwargs["basemap"] in basemaps.keys():
kwargs["basemap"] = get_basemap(kwargs["basemap"])
kwargs["add_google_map"] = False
else:
kwargs.pop("basemap")
# Inherits the ipyleaflet Map class
super().__init__(**kwargs)
self.baseclass = "ipyleaflet"
self.layout.height = kwargs["height"]
if "width" in kwargs:
self.layout.width = kwargs["width"]
# sandbox path for Voila app to restrict access to system directories.
if "sandbox_path" not in kwargs:
self.sandbox_path = None
else:
if os.path.exists(os.path.abspath(kwargs["sandbox_path"])):
self.sandbox_path = kwargs["sandbox_path"]
else:
print("The sandbox path is invalid.")
self.sandbox_path = None
# Add Google Maps as the default basemap
if kwargs.get("add_google_map", True):
self.add("Google Maps")
# Remove all default controls
self.clear_controls()
if kwargs.get("lite_mode"): # Lite mode with only the zoom control
self.add_controls("zoom_ctrl", position="topleft")
else: # full mode with all controls
topleft_controls = [
"data_ctrl",
"zoom_ctrl",
"fullscreen_ctrl",
"draw_ctrl",
]
bottomleft_controls = [
"scale_ctrl",
"measure_ctrl",
]
topright_controls = [
"toolbar_ctrl",
]
bottomright_controls = ["attribution_ctrl"]
for control in topleft_controls:
if kwargs.get(control, True):
self.add_controls(control, position="topleft")
for control in bottomleft_controls:
if kwargs.get(control, True):
self.add_controls(control, position="bottomleft")
for control in topright_controls:
if kwargs.get(control, True):
self.add_controls(control, position="topright")
for control in bottomright_controls:
if kwargs.get(control, True):
self.add_controls(control, position="bottomright")
# Map attributes for drawing features
self.draw_features = []
self.draw_last_feature = None
self.draw_layer = None
self.user_roi = None
self.user_rois = None
# Map attributes for layers
self.geojson_layers = []
self.ee_layers = []
self.ee_layer_names = []
self.ee_raster_layers = []
self.ee_raster_layer_names = []
self.ee_vector_layers = []
self.ee_vector_layer_names = []
self.ee_layer_dict = {}
# ipyleaflet built-in layer control
self.layer_control = None
# Default reducer to use
if kwargs["ee_initialize"]:
self.roi_reducer = ee.Reducer.mean()
self.roi_reducer_scale = None
def add(self, object):
"""Adds a layer or control to the map.
Args:
object (object): The layer or control to add to the map.
"""
if isinstance(object, str):
object = check_basemap(object)
if object in basemaps.keys():
object = get_basemap(object)
super().add(object)
if hasattr(self, "layer_manager_widget"):
self.update_layer_manager()
def add_controls(self, controls, position="topleft"):
"""Adds a list of controls to the map.
Args:
controls (list): A list of controls to add to the map.
position (str, optional): The position of the controls on the map. Defaults to 'topleft'.
"""
if not isinstance(controls, list):
controls = [controls]
for control in controls:
if isinstance(control, str):
control = control.lower()
if control == "data_ctrl":
from .toolbar import search_data_gui
search_data_gui(self, position=position)
elif control == "zoom_ctrl":
self.add(ipyleaflet.ZoomControl(position=position))
elif control == "fullscreen_ctrl":
fullscreen = ipyleaflet.FullScreenControl(position=position)
self.add(fullscreen)
elif control == "search_ctrl":
self.add_search_control(position=position)
elif control == "draw_ctrl":
self.add_draw_control(position=position)
elif control == "scale_ctrl":
scale_control = ipyleaflet.ScaleControl(position=position)
self.add(scale_control)
elif control == "measure_ctrl":
measure = ipyleaflet.MeasureControl(
position=position,
active_color="orange",
primary_length_unit="kilometers",
)
self.add(measure)
elif control == "toolbar_ctrl":
self.add_toolbar(position=position)
elif control == "layer_ctrl":
layer_control = ipyleaflet.LayersControl(position=position)
self.add(layer_control)
elif control == "attribution_ctrl":
attribution = ipyleaflet.AttributionControl(position=position)
self.add(attribution)
else:
raise ValueError(f"Unsupported control: {control}")
else:
self.add(control)
def set_options(self, mapTypeId="HYBRID", **kwargs):
"""Adds Google basemap and controls to the ipyleaflet map.
Args:
mapTypeId (str, optional): A mapTypeId to set the basemap to. Can be one of "ROADMAP", "SATELLITE",
"HYBRID" or "TERRAIN" to select one of the standard Google Maps API map types. Defaults to 'HYBRID'.
"""
try:
self.add(mapTypeId)
except Exception:
raise ValueError(
'Google basemaps can only be one of "ROADMAP", "SATELLITE", "HYBRID" or "TERRAIN".'
)
setOptions = set_options
def add_ee_layer(
self, ee_object, vis_params={}, name=None, shown=True, opacity=1.0
):
"""Adds a given EE object to the map as a layer.
Args:
ee_object (Collection|Feature|Image|MapId): The object to add to the map.
vis_params (dict, optional): The visualization parameters. Defaults to {}.
name (str, optional): The name of the layer. Defaults to 'Layer N'.
shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
opacity (float, optional): The layer's opacity represented as a number between 0 and 1. Defaults to 1.
"""
if name is None:
layer_count = len(self.layers)
name = "Layer " + str(layer_count + 1)
tile_layer = EELeafletTileLayer(ee_object, vis_params, name, shown, opacity)
layer = self.find_layer(name=name)
if layer is not None:
existing_object = self.ee_layer_dict[name]["ee_object"]
if isinstance(existing_object, (ee.Image, ee.ImageCollection)):
self.ee_raster_layers.remove(existing_object)
self.ee_raster_layer_names.remove(name)
if (
hasattr(self, "_plot_dropdown_widget")
and self._plot_dropdown_widget is not None
):
self._plot_dropdown_widget.options = list(
self.ee_raster_layer_names
)
elif isinstance(ee_object, (ee.Geometry, ee.Feature, ee.FeatureCollection)):
self.ee_vector_layers.remove(existing_object)
self.ee_vector_layer_names.remove(name)
self.ee_layers.remove(existing_object)
self.ee_layer_names.remove(name)
self.remove_layer(layer)
self.ee_layers.append(ee_object)
if name not in self.ee_layer_names:
self.ee_layer_names.append(name)
self.ee_layer_dict[name] = {
"ee_object": ee_object,
"ee_layer": tile_layer,
"vis_params": vis_params,
}
self.add(tile_layer)
if isinstance(ee_object, (ee.Image, ee.ImageCollection)):
self.ee_raster_layers.append(ee_object)
self.ee_raster_layer_names.append(name)
if (
hasattr(self, "_plot_dropdown_widget")
and self._plot_dropdown_widget is not None
):
self._plot_dropdown_widget.options = list(self.ee_raster_layer_names)
elif isinstance(ee_object, (ee.Geometry, ee.Feature, ee.FeatureCollection)):
self.ee_vector_layers.append(ee_object)
self.ee_vector_layer_names.append(name)
arc_add_layer(tile_layer.url_format, name, shown, opacity)
addLayer = add_ee_layer
def remove_ee_layer(self, name):
"""Removes an Earth Engine layer.
Args:
name (str): The name of the Earth Engine layer to remove.
"""
if name in self.ee_layer_dict:
ee_object = self.ee_layer_dict[name]["ee_object"]
ee_layer = self.ee_layer_dict[name]["ee_layer"]
if name in self.ee_raster_layer_names:
self.ee_raster_layer_names.remove(name)
self.ee_raster_layers.remove(ee_object)
elif name in self.ee_vector_layer_names:
self.ee_vector_layer_names.remove(name)
self.ee_vector_layers.remove(ee_object)
self.ee_layers.remove(ee_object)
self.ee_layer_names.remove(name)
if ee_layer in self.layers:
self.remove_layer(ee_layer)
def set_center(self, lon, lat, zoom=None):
"""Centers the map view at a given coordinates with the given zoom level.
Args:
lon (float): The longitude of the center, in degrees.
lat (float): The latitude of the center, in degrees.
zoom (int, optional): The zoom level, from 1 to 24. Defaults to None.
"""
self.center = (lat, lon)
if zoom is not None:
self.zoom = zoom
if is_arcpy():
arc_zoom_to_extent(lon, lat, lon, lat)
setCenter = set_center
def center_object(self, ee_object, zoom=None):
"""Centers the map view on a given object.
Args:
ee_object (Element|Geometry): An Earth Engine object to center on a geometry, image or feature.
zoom (int, optional): The zoom level, from 1 to 24. Defaults to None.
"""
maxError = 0.001
if isinstance(ee_object, ee.Geometry):
geometry = ee_object.transform(maxError=maxError)
else:
try:
geometry = ee_object.geometry(maxError=maxError).transform(
maxError=maxError
)
except Exception:
raise Exception(
"ee_object must be an instance of one of ee.Geometry, ee.FeatureCollection, ee.Image, or ee.ImageCollection."
)
if zoom is not None:
if not isinstance(zoom, int):
raise Exception("Zoom must be an integer.")
else:
centroid = geometry.centroid(maxError=maxError).getInfo()["coordinates"]
lat = centroid[1]
lon = centroid[0]
self.set_center(lon, lat, zoom)
if is_arcpy():
arc_zoom_to_extent(lon, lat, lon, lat)
else:
coordinates = geometry.bounds(maxError).getInfo()["coordinates"][0]
x = [c[0] for c in coordinates]
y = [c[1] for c in coordinates]
xmin = min(x)
xmax = max(x)
ymin = min(y)
ymax = max(y)
bounds = [[ymin, xmin], [ymax, xmax]]
self.fit_bounds(bounds)
if is_arcpy():
arc_zoom_to_extent(xmin, ymin, xmax, ymax)
centerObject = center_object
def zoom_to_bounds(self, bounds):
"""Zooms to a bounding box in the form of [minx, miny, maxx, maxy].
Args:
bounds (list | tuple): A list/tuple containing minx, miny, maxx, maxy values for the bounds.
"""
# The ipyleaflet fit_bounds method takes lat/lon bounds in the form [[south, west], [north, east]].
self.fit_bounds([[bounds[1], bounds[0]], [bounds[3], bounds[2]]])
def get_scale(self):
"""Returns the approximate pixel scale of the current map view, in meters.
Returns:
float: Map resolution in meters.
"""
import math
zoom_level = self.zoom
center_lat = self.center[0]
# Reference:
# - https://blogs.bing.com/maps/2006/02/25/map-control-zoom-levels-gt-resolution
# - https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames#Resolution_and_Scale
center_lat_cos = math.cos(math.radians(center_lat))
resolution = 156543.04 * center_lat_cos / math.pow(2, zoom_level)
return resolution
getScale = get_scale
def add_basemap(self, basemap="HYBRID", show=True, **kwargs):
"""Adds a basemap to the map.
Args:
basemap (str, optional): Can be one of string from basemaps. Defaults to 'HYBRID'.
visible (bool, optional): Whether the basemap is visible or not. Defaults to True.
**kwargs: Keyword arguments for the TileLayer.
"""
import xyzservices
try:
layer_names = self.get_layer_names()
map_dict = {
"ROADMAP": "Google Maps",
"SATELLITE": "Google Satellite",
"TERRAIN": "Google Terrain",
"HYBRID": "Google Hybrid",
}
if isinstance(basemap, str):
if basemap.upper() in map_dict:
basemap = map_dict[basemap.upper()]
if isinstance(basemap, xyzservices.TileProvider):
name = basemap.name
url = basemap.build_url()
attribution = basemap.attribution
if "max_zoom" in basemap.keys():
max_zoom = basemap["max_zoom"]
else:
max_zoom = 22
layer = ipyleaflet.TileLayer(
url=url,
name=name,
max_zoom=max_zoom,
attribution=attribution,
visible=show,
**kwargs,
)
self.add(layer)
arc_add_layer(url, name)
elif basemap in basemaps and basemaps[basemap].name not in layer_names:
self.add(basemap)
self.layers[-1].visible = show
arc_add_layer(basemaps[basemap].url, basemap)
elif basemap in basemaps and basemaps[basemap].name in layer_names:
print(f"{basemap} has been already added before.")
else:
print(
"Basemap can only be one of the following:\n {}".format(
"\n ".join(basemaps.keys())
)
)
except Exception as e:
raise ValueError(
"Basemap can only be one of the following:\n {}".format(
"\n ".join(basemaps.keys())
)
)
def get_layer_names(self):
"""Gets layer names as a list.
Returns:
list: A list of layer names.
"""
layer_names = []
for layer in list(self.layers):
if len(layer.name) > 0:
layer_names.append(layer.name)
return layer_names
def find_layer(self, name):
"""Finds layer by name
Args:
name (str): Name of the layer to find.
Returns:
object: ipyleaflet layer object.
"""
layers = self.layers
for layer in layers:
if layer.name == name:
return layer
return None
def show_layer(self, name, show=True):
"""Shows or hides a layer on the map.
Args:
name (str): Name of the layer to show/hide.
show (bool, optional): Whether to show or hide the layer. Defaults to True.
"""
layer = self.find_layer(name)
if layer is not None:
layer.visible = show
def find_layer_index(self, name):
"""Finds layer index by name
Args:
name (str): Name of the layer to find.
Returns:
int: Index of the layer with the specified name
"""
layers = self.layers
for index, layer in enumerate(layers):
if layer.name == name:
return index
return -1
def layer_opacity(self, name, opacity=1.0):
"""Changes layer opacity.
Args:
name (str): The name of the layer to change opacity.
opacity (float, optional): The opacity value to set. Defaults to 1.0.
"""
layer = self.find_layer(name)
try:
layer.opacity = opacity
except Exception as e:
raise Exception(e)
def add_tile_layer(
self,
url="https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png",
name="Untitled",
attribution="",
opacity=1.0,
shown=True,
**kwargs,
):
"""Adds a TileLayer to the map.
Args:
url (str, optional): The URL of the tile layer. Defaults to 'https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png'.
name (str, optional): The layer name to use for the layer. Defaults to 'Untitled'.
attribution (str, optional): The attribution to use. Defaults to ''.
opacity (float, optional): The opacity of the layer. Defaults to 1.
shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
"""
if "max_zoom" not in kwargs:
kwargs["max_zoom"] = 100
if "max_native_zoom" not in kwargs:
kwargs["max_native_zoom"] = 100
try:
tile_layer = ipyleaflet.TileLayer(
url=url,
name=name,
attribution=attribution,
opacity=opacity,
visible=shown,
**kwargs,
)
self.add(tile_layer)
except Exception as e:
print("Failed to add the specified TileLayer.")
raise Exception(e)
def set_plot_options(
self,
add_marker_cluster=False,
sample_scale=None,
plot_type=None,
overlay=False,
position="bottomright",
min_width=None,
max_width=None,
min_height=None,
max_height=None,
**kwargs,
):
"""Sets plotting options.
Args:
add_marker_cluster (bool, optional): Whether to add a marker cluster. Defaults to False.
sample_scale (float, optional): A nominal scale in meters of the projection to sample in . Defaults to None.
plot_type (str, optional): The plot type can be one of "None", "bar", "scatter" or "hist". Defaults to None.
overlay (bool, optional): Whether to overlay plotted lines on the figure. Defaults to False.
position (str, optional): Position of the control, can be ‘bottomleft’, ‘bottomright’, ‘topleft’, or ‘topright’. Defaults to 'bottomright'.
min_width (int, optional): Min width of the widget (in pixels), if None it will respect the content size. Defaults to None.
max_width (int, optional): Max width of the widget (in pixels), if None it will respect the content size. Defaults to None.
min_height (int, optional): Min height of the widget (in pixels), if None it will respect the content size. Defaults to None.
max_height (int, optional): Max height of the widget (in pixels), if None it will respect the content size. Defaults to None.
"""
plot_options_dict = {}
plot_options_dict["add_marker_cluster"] = add_marker_cluster
plot_options_dict["sample_scale"] = sample_scale
plot_options_dict["plot_type"] = plot_type
plot_options_dict["overlay"] = overlay
plot_options_dict["position"] = position
plot_options_dict["min_width"] = min_width
plot_options_dict["max_width"] = max_width
plot_options_dict["min_height"] = min_height
plot_options_dict["max_height"] = max_height
for key in kwargs:
plot_options_dict[key] = kwargs[key]
self._plot_options = plot_options_dict
if not hasattr(self, "_plot_marker_cluster"):
self._plot_marker_cluster = ipyleaflet.MarkerCluster(name="Marker Cluster")
if add_marker_cluster and (self._plot_marker_cluster not in self.layers):
self.add(self._plot_marker_cluster)
def plot(
self,
x,
y,
plot_type=None,
overlay=False,
position="bottomright",
min_width=None,
max_width=None,
min_height=None,
max_height=None,
**kwargs,
):
"""Creates a plot based on x-array and y-array data.
Args:
x (numpy.ndarray or list): The x-coordinates of the plotted line.
y (numpy.ndarray or list): The y-coordinates of the plotted line.
plot_type (str, optional): The plot type can be one of "None", "bar", "scatter" or "hist". Defaults to None.
overlay (bool, optional): Whether to overlay plotted lines on the figure. Defaults to False.
position (str, optional): Position of the control, can be ‘bottomleft’, ‘bottomright’, ‘topleft’, or ‘topright’. Defaults to 'bottomright'.
min_width (int, optional): Min width of the widget (in pixels), if None it will respect the content size. Defaults to None.
max_width (int, optional): Max width of the widget (in pixels), if None it will respect the content size. Defaults to None.
min_height (int, optional): Min height of the widget (in pixels), if None it will respect the content size. Defaults to None.
max_height (int, optional): Max height of the widget (in pixels), if None it will respect the content size. Defaults to None.
"""
if hasattr(self, "_plot_widget") and self._plot_widget is not None:
plot_widget = self._plot_widget
else:
plot_widget = widgets.Output(
layout={"border": "1px solid black", "max_width": "500px"}
)
plot_control = ipyleaflet.WidgetControl(
widget=plot_widget,
position=position,
min_width=min_width,
max_width=max_width,
min_height=min_height,
max_height=max_height,
)
self._plot_widget = plot_widget
self._plot_control = plot_control
self.add(plot_control)
if max_width is None:
max_width = 500
if max_height is None:
max_height = 300
if (plot_type is None) and ("markers" not in kwargs):
kwargs["markers"] = "circle"
with plot_widget:
try:
fig = plt.figure(1, **kwargs)
if max_width is not None:
fig.layout.width = str(max_width) + "px"
if max_height is not None:
fig.layout.height = str(max_height) + "px"
plot_widget.outputs = ()
if not overlay:
plt.clear()
if plot_type is None:
if "marker" not in kwargs:
kwargs["marker"] = "circle"
plt.plot(x, y, **kwargs)
elif plot_type == "bar":
plt.bar(x, y, **kwargs)
elif plot_type == "scatter":
plt.scatter(x, y, **kwargs)
elif plot_type == "hist":
plt.hist(y, **kwargs)
plt.show()
except Exception as e:
print("Failed to create plot.")
raise Exception(e)
def add_layer_control(self, position="topright"):
"""Adds a layer control to the map.
Args:
position (str, optional): _description_. Defaults to "topright".
"""
if self.layer_control is None:
layer_control = ipyleaflet.LayersControl(position=position)
self.add(layer_control)
addLayerControl = add_layer_control
def add_legend(
self,
title="Legend",
legend_dict=None,
labels=None,
colors=None,
position="bottomright",
builtin_legend=None,
layer_name=None,
add_header=True,
widget_args={},
**kwargs,
):
"""Adds a customized basemap to the map.
Args:
title (str, optional): Title of the legend. Defaults to 'Legend'.
legend_dict (dict, optional): A dictionary containing legend items as keys and color as values. If provided, legend_keys and legend_colors will be ignored. Defaults to None.
labels (list, optional): A list of legend keys. Defaults to None.
colors (list, optional): A list of legend colors. Defaults to None.
position (str, optional): Position of the legend. Defaults to 'bottomright'.
builtin_legend (str, optional): Name of the builtin legend to add to the map. Defaults to None.
layer_name (str, optional): Layer name of the legend to be associated with. Defaults to None.
add_header (bool, optional): Whether the legend can be closed or not. Defaults to True.
widget_args (dict, optional): Additional arguments passed to the widget_template() function. Defaults to {}.
"""
from IPython.display import display
import pkg_resources
from .legends import builtin_legends
pkg_dir = os.path.dirname(
pkg_resources.resource_filename("geemap", "geemap.py")
)
legend_template = os.path.join(pkg_dir, "data/template/legend.html")
if "min_width" not in kwargs:
min_width = None
if "max_width" not in kwargs:
max_width = "300px"
else:
max_width = kwargs["max_width"]
if "min_height" not in kwargs:
min_height = None
else:
min_height = kwargs["min_height"]
if "max_height" not in kwargs:
max_height = None
else:
max_height = kwargs["max_height"]
if "height" not in kwargs:
height = None
else:
height = kwargs["height"]
if "width" not in kwargs:
width = None
else:
width = kwargs["width"]
if width is None:
max_width = "300px"
if height is None:
max_height = "400px"
if not os.path.exists(legend_template):
print("The legend template does not exist.")
return
if labels is not None:
if not isinstance(labels, list):
print("The legend keys must be a list.")
return
else:
labels = ["One", "Two", "Three", "Four", "etc"]
if colors is not None:
if not isinstance(colors, list):
print("The legend colors must be a list.")
return
elif all(isinstance(item, tuple) for item in colors):
try:
colors = [rgb_to_hex(x) for x in colors]
except Exception as e:
print(e)
elif all((item.startswith("#") and len(item) == 7) for item in colors):
pass
elif all((len(item) == 6) for item in colors):
pass
else:
print("The legend colors must be a list of tuples.")
return
else:
colors = [
"#8DD3C7",
"#FFFFB3",
"#BEBADA",
"#FB8072",
"#80B1D3",
]
if len(labels) != len(colors):
print("The legend keys and values must be the same length.")
return
allowed_builtin_legends = builtin_legends.keys()
if builtin_legend is not None:
if builtin_legend not in allowed_builtin_legends:
print(
"The builtin legend must be one of the following: {}".format(
", ".join(allowed_builtin_legends)
)
)
return
else:
legend_dict = builtin_legends[builtin_legend]
labels = list(legend_dict.keys())
colors = list(legend_dict.values())
if legend_dict is not None:
if not isinstance(legend_dict, dict):
print("The legend dict must be a dictionary.")
return
else:
labels = list(legend_dict.keys())
colors = list(legend_dict.values())
if all(isinstance(item, tuple) for item in colors):
try:
colors = [rgb_to_hex(x) for x in colors]
except Exception as e:
print(e)
allowed_positions = [
"topleft",
"topright",
"bottomleft",
"bottomright",
]
if position not in allowed_positions:
print(
"The position must be one of the following: {}".format(
", ".join(allowed_positions)
)
)
return
header = []
content = []
footer = []
with open(legend_template) as f:
lines = f.readlines()
lines[3] = lines[3].replace("Legend", title)
header = lines[:6]
footer = lines[11:]
for index, key in enumerate(labels):
color = colors[index]
if not color.startswith("#"):
color = "#" + color
item = " <li><span style='background:{};'></span>{}</li>\n".format(
color, key
)
content.append(item)
legend_html = header + content + footer
legend_text = "".join(legend_html)
try:
legend_output = widgets.Output(
layout={
# "border": "1px solid black",
"max_width": max_width,
"min_width": min_width,
"max_height": max_height,
"min_height": min_height,
"height": height,
"width": width,
"overflow": "scroll",
}
)
legend_widget = widgets.HTML(value=legend_text)
if add_header:
if "show_close_button" not in widget_args:
widget_args["show_close_button"] = False
if "widget_icon" not in widget_args:
widget_args["widget_icon"] = "bars"
legend_output_widget = widget_template(
legend_output,
position=position,
display_widget=legend_widget,
**widget_args,
)
else:
legend_output_widget = legend_output
legend_control = ipyleaflet.WidgetControl(
widget=legend_output_widget, position=position
)
# legend_output.append_display_data(legend_widget)
legend_output.clear_output()
with legend_output:
display(legend_widget)
self._legend_widget = legend_output_widget
self._legend = legend_control
self.add(legend_control)
if not hasattr(self, "legends"):
setattr(self, "legends", [legend_control])
else:
self.legends.append(legend_control)
if layer_name in self.ee_layer_names:
self.ee_layer_dict[layer_name]["legend"] = legend_control
except Exception as e:
raise Exception(e)
def add_colorbar(
self,
vis_params=None,
cmap="gray",
discrete=False,
label=None,
orientation="horizontal",
position="bottomright",
transparent_bg=False,
layer_name=None,
font_size=9,
axis_off=False,
max_width=None,
**kwargs,
):
"""Add a matplotlib colorbar to the map
Args:
vis_params (dict): Visualization parameters as a dictionary. See https://developers.google.com/earth-engine/guides/image_visualization for options.
cmap (str, optional): Matplotlib colormap. Defaults to "gray". See https://matplotlib.org/3.3.4/tutorials/colors/colormaps.html#sphx-glr-tutorials-colors-colormaps-py for options.
discrete (bool, optional): Whether to create a discrete colorbar. Defaults to False.
label (str, optional): Label for the colorbar. Defaults to None.
orientation (str, optional): Orientation of the colorbar, such as "vertical" and "horizontal". Defaults to "horizontal".
position (str, optional): Position of the colorbar on the map. It can be one of: topleft, topright, bottomleft, and bottomright. Defaults to "bottomright".
transparent_bg (bool, optional): Whether to use transparent background. Defaults to False.
layer_name (str, optional): The layer name associated with the colorbar. Defaults to None.
font_size (int, optional): Font size for the colorbar. Defaults to 9.
axis_off (bool, optional): Whether to turn off the axis. Defaults to False.
max_width (str, optional): Maximum width of the colorbar in pixels. Defaults to None.
Raises:
TypeError: If the vis_params is not a dictionary.
ValueError: If the orientation is not either horizontal or vertical.
TypeError: If the provided min value is not scalar type.
TypeError: If the provided max value is not scalar type.
TypeError: If the provided opacity value is not scalar type.
TypeError: If cmap or palette is not provided.
"""
colorbar = map_widgets.Colorbar(
vis_params,
cmap,
discrete,
label,
orientation,
transparent_bg,
font_size,
axis_off,
max_width,
**kwargs,
)
colormap_ctrl = ipyleaflet.WidgetControl(
widget=colorbar, position=position, transparent_bg=transparent_bg
)
self._colorbar = colormap_ctrl
if layer_name in self.ee_layer_names:
if "colorbar" in self.ee_layer_dict[layer_name]:
self.remove_control(self.ee_layer_dict[layer_name]["colorbar"])
self.ee_layer_dict[layer_name]["colorbar"] = colormap_ctrl
if not hasattr(self, "colorbars"):
self.colorbars = [colormap_ctrl]
else:
self.colorbars.append(colormap_ctrl)
self.add(colormap_ctrl)
def remove_colorbar(self):
"""Remove colorbar from the map."""
if hasattr(self, "_colorbar") and self._colorbar is not None:
self.remove_control(self._colorbar)
def remove_colorbars(self):
"""Remove all colorbars from the map."""
if hasattr(self, "colorbars"):
for colorbar in self.colorbars:
if colorbar in self.controls:
self.remove_control(colorbar)
def remove_legend(self):
"""Remove legend from the map."""
if hasattr(self, "_legend") and self._legend is not None:
if self._legend in self.controls:
self.remove_control(self._legend)
def remove_legends(self):
"""Remove all legends from the map."""
if hasattr(self, "legends"):
for legend in self.legends:
if legend in self.controls:
self.remove_control(legend)
def create_vis_widget(self, layer_dict):
"""Create a GUI for changing layer visualization parameters interactively.
Args:
layer_dict (dict): A dict containning information about the layer. It is an element from Map.ee_layer_dict.
Returns:
object: An ipywidget.
"""
import matplotlib as mpl
import matplotlib.pyplot as plt
ee_object = layer_dict["ee_object"]
if isinstance(ee_object, ee.Geometry) or isinstance(ee_object, ee.Feature):
ee_object = ee.FeatureCollection(ee_object)
ee_layer = layer_dict["ee_layer"]
vis_params = layer_dict["vis_params"]
layer_name = ee_layer.name
layer_opacity = ee_layer.opacity
band_names = None
min_value = 0
max_value = 100
sel_bands = None
layer_palette = []
layer_gamma = 1
left_value = 0
right_value = 10000
max_width = "270px"
self._colorbar_widget = widgets.Output(
layout=widgets.Layout(height="60px", max_width=max_width)
)
self._colorbar_ctrl = ipyleaflet.WidgetControl(
widget=self._colorbar_widget, position="bottomright"
)
self.add(self._colorbar_ctrl)
# def vdir(obj): # Get branca colormap list
# return [x for x in dir(obj) if not x.startswith("_")]
if isinstance(ee_object, ee.Image):
band_names = ee_object.bandNames().getInfo()
band_count = len(band_names)
if "min" in vis_params.keys():
min_value = vis_params["min"]
if min_value < left_value:
left_value = min_value - max_value
if "max" in vis_params.keys():
max_value = vis_params["max"]
right_value = 2 * max_value
if "gamma" in vis_params.keys():
layer_gamma = vis_params["gamma"]
if "bands" in vis_params.keys():
sel_bands = vis_params["bands"]
if "palette" in vis_params.keys():
layer_palette = [
color.replace("#", "") for color in list(vis_params["palette"])
]
vis_widget = widgets.VBox(
layout=widgets.Layout(padding="5px 5px 5px 8px", width="330px")
)
label = widgets.Label(value=f"{layer_name} visualization parameters")
radio1 = widgets.RadioButtons(
options=["1 band (Grayscale)"], layout={"width": "max-content"}
)
radio2 = widgets.RadioButtons(
options=["3 bands (RGB)"], layout={"width": "max-content"}
)
radio1.index = None
radio2.index = None
dropdown_width = "98px"
band1_dropdown = widgets.Dropdown(
options=band_names,
value=band_names[0],
layout=widgets.Layout(width=dropdown_width),
)
band2_dropdown = widgets.Dropdown(
options=band_names,
value=band_names[0],
layout=widgets.Layout(width=dropdown_width),
)
band3_dropdown = widgets.Dropdown(
options=band_names,
value=band_names[0],
layout=widgets.Layout(width=dropdown_width),
)
bands_hbox = widgets.HBox()
legend_chk = widgets.Checkbox(
value=False,
description="Legend",
indent=False,
layout=widgets.Layout(width="70px"),
)
color_picker = widgets.ColorPicker(
concise=False,
value="#000000",
layout=widgets.Layout(width="116px"),
style={"description_width": "initial"},
)
add_color = widgets.Button(
icon="plus",
tooltip="Add a hex color string to the palette",
layout=widgets.Layout(width="32px"),
)
del_color = widgets.Button(
icon="minus",
tooltip="Remove a hex color string from the palette",
layout=widgets.Layout(width="32px"),
)
reset_color = widgets.Button(
icon="eraser",
tooltip="Remove all color strings from the palette",
layout=widgets.Layout(width="34px"),
)
classes = widgets.Dropdown(
options=["Any"] + [str(i) for i in range(3, 13)],
description="Classes:",
layout=widgets.Layout(width="115px"),
style={"description_width": "initial"},
)
colormap_options = plt.colormaps()
colormap_options.sort()
colormap = widgets.Dropdown(
options=colormap_options,
value=None,
description="Colormap:",
layout=widgets.Layout(width="181px"),
style={"description_width": "initial"},
)
def classes_changed(change):
if change["new"]:
selected = change["owner"].value
if colormap.value is not None:
n_class = None
if selected != "Any":
n_class = int(classes.value)
colors = plt.cm.get_cmap(colormap.value, n_class)
cmap_colors = [
mpl.colors.rgb2hex(colors(i))[1:] for i in range(colors.N)
]
_, ax = plt.subplots(figsize=(3, 0.3))
cmap = mpl.colors.LinearSegmentedColormap.from_list(
"custom", to_hex_colors(cmap_colors), N=256
)
norm = mpl.colors.Normalize(
vmin=value_range.value[0], vmax=value_range.value[1]
)
mpl.colorbar.ColorbarBase(
ax, norm=norm, cmap=cmap, orientation="horizontal"
)
palette.value = ", ".join([color for color in cmap_colors])
if self._colorbar_widget is None:
self._colorbar_widget = widgets.Output(
layout=widgets.Layout(
height="60px", max_width=max_width
)
)
if (not hasattr(self, "_colorbar_ctrl")) or (
self._colorbar_ctrl is None
):
self._colorbar_ctrl = ipyleaflet.WidgetControl(
widget=self._colorbar_widget, position="bottomright"
)
self.add(self._colorbar_ctrl)
colorbar_output = self._colorbar_widget
with colorbar_output:
colorbar_output.outputs = ()
plt.show()
if len(palette.value) > 0 and "," in palette.value:
labels = [
f"Class {i+1}"
for i in range(len(palette.value.split(",")))
]
legend_labels.value = ", ".join(labels)
classes.observe(classes_changed, "value")
palette = widgets.Text(
value=", ".join(layer_palette),
placeholder="List of hex color code (RRGGBB)",
description="Palette:",
tooltip="Enter a list of hex color code (RRGGBB)",
layout=widgets.Layout(width="300px"),
style={"description_width": "initial"},
)
def add_color_clicked(b):
if color_picker.value is not None:
if len(palette.value) == 0:
palette.value = color_picker.value[1:]
else:
palette.value += ", " + color_picker.value[1:]
def del_color_clicked(b):
if "," in palette.value:
items = [item.strip() for item in palette.value.split(",")]
palette.value = ", ".join(items[:-1])
else:
palette.value = ""
def reset_color_clicked(b):
palette.value = ""
add_color.on_click(add_color_clicked)
del_color.on_click(del_color_clicked)
reset_color.on_click(reset_color_clicked)
spacer = widgets.Label(layout=widgets.Layout(width="5px"))
v_spacer = widgets.Label(layout=widgets.Layout(height="5px"))
radio_btn = widgets.HBox([radio1, spacer, spacer, spacer, radio2])
value_range = widgets.FloatRangeSlider(
value=[min_value, max_value],
min=left_value,
max=right_value,
step=0.1,
description="Range:",
disabled=False,
continuous_update=False,
readout=True,
readout_format=".1f",
layout=widgets.Layout(width="300px"),
style={"description_width": "45px"},
)
range_hbox = widgets.HBox([value_range, spacer])
opacity = widgets.FloatSlider(
value=layer_opacity,
min=0,
max=1,
step=0.01,
description="Opacity:",
continuous_update=False,
readout=True,
readout_format=".2f",
layout=widgets.Layout(width="320px"),
style={"description_width": "50px"},
)
gamma = widgets.FloatSlider(
value=layer_gamma,
min=0.1,
max=10,
step=0.01,
description="Gamma:",
continuous_update=False,
readout=True,
readout_format=".2f",
layout=widgets.Layout(width="320px"),
style={"description_width": "50px"},
)
legend_chk = widgets.Checkbox(
value=False,
description="Legend",
indent=False,
layout=widgets.Layout(width="70px"),
)
linear_chk = widgets.Checkbox(
value=True,
description="Linear colormap",
indent=False,
layout=widgets.Layout(width="150px"),
)
step_chk = widgets.Checkbox(
value=False,
description="Step colormap",
indent=False,
layout=widgets.Layout(width="140px"),
)
legend_title = widgets.Text(
value="Legend",
description="Legend title:",
tooltip="Enter a title for the legend",
layout=widgets.Layout(width="300px"),
style={"description_width": "initial"},
)
legend_labels = widgets.Text(
value="Class 1, Class 2, Class 3",
description="Legend labels:",
tooltip="Enter a a list of labels for the legend",
layout=widgets.Layout(width="300px"),
style={"description_width": "initial"},
)
colormap_hbox = widgets.HBox([linear_chk, step_chk])
legend_vbox = widgets.VBox()
def linear_chk_changed(change):
if change["new"]:
step_chk.value = False
legend_vbox.children = [colormap_hbox]
else:
step_chk.value = True
def step_chk_changed(change):
if change["new"]:
linear_chk.value = False
if len(layer_palette) > 0:
legend_labels.value = ",".join(
[
"Class " + str(i)
for i in range(1, len(layer_palette) + 1)
]
)
legend_vbox.children = [
colormap_hbox,
legend_title,
legend_labels,
]
else:
linear_chk.value = True
linear_chk.observe(linear_chk_changed, "value")
step_chk.observe(step_chk_changed, "value")
def colormap_changed(change):
if change["new"]:
n_class = None
if classes.value != "Any":
n_class = int(classes.value)
colors = plt.cm.get_cmap(colormap.value, n_class)
cmap_colors = [
mpl.colors.rgb2hex(colors(i))[1:] for i in range(colors.N)
]
_, ax = plt.subplots(figsize=(3, 0.3))
cmap = mpl.colors.LinearSegmentedColormap.from_list(
"custom", to_hex_colors(cmap_colors), N=256
)
norm = mpl.colors.Normalize(
vmin=value_range.value[0], vmax=value_range.value[1]
)
mpl.colorbar.ColorbarBase(
ax, norm=norm, cmap=cmap, orientation="horizontal"
)
palette.value = ", ".join(cmap_colors)
if self._colorbar_widget is None:
self._colorbar_widget = widgets.Output(
layout=widgets.Layout(height="60px", max_width="270px")
)
if (
not hasattr(self, "_colorbar_ctrl")
) or self._colorbar_ctrl is None:
self._colorbar_ctrl = ipyleaflet.WidgetControl(
widget=self._colorbar_widget, position="bottomright"
)
self.add(self._colorbar_ctrl)
colorbar_output = self._colorbar_widget
with colorbar_output:
colorbar_output.outputs = ()
plt.show()
# display(colorbar)
if len(palette.value) > 0 and "," in palette.value:
labels = [
f"Class {i+1}" for i in range(len(palette.value.split(",")))
]
legend_labels.value = ", ".join(labels)
colormap.observe(colormap_changed, "value")
btn_width = "97.5px"
import_btn = widgets.Button(
description="Import",
button_style="primary",
tooltip="Import vis params to notebook",
layout=widgets.Layout(width=btn_width),
)
apply_btn = widgets.Button(
description="Apply",
tooltip="Apply vis params to the layer",
layout=widgets.Layout(width=btn_width),
)
close_btn = widgets.Button(
description="Close",
tooltip="Close vis params diaglog",
layout=widgets.Layout(width=btn_width),
)
def import_btn_clicked(b):
vis = {}
if radio1.index == 0:
vis["bands"] = [band1_dropdown.value]
if len(palette.value) > 0:
vis["palette"] = palette.value.split(",")
else:
vis["bands"] = [
band1_dropdown.value,
band2_dropdown.value,
band3_dropdown.value,
]
vis["min"] = value_range.value[0]
vis["max"] = value_range.value[1]
vis["opacity"] = opacity.value
vis["gamma"] = gamma.value
create_code_cell(f"vis_params = {str(vis)}")
def apply_btn_clicked(b):
vis = {}
if radio1.index == 0:
vis["bands"] = [band1_dropdown.value]
if len(palette.value) > 0:
vis["palette"] = [c.strip() for c in palette.value.split(",")]
else:
vis["bands"] = [
band1_dropdown.value,
band2_dropdown.value,
band3_dropdown.value,
]
vis["gamma"] = gamma.value
vis["min"] = value_range.value[0]
vis["max"] = value_range.value[1]
self.addLayer(ee_object, vis, layer_name, True, opacity.value)
ee_layer.visible = False
if legend_chk.value:
if (
hasattr(self, "_colorbar_ctrl")
and (self._colorbar_ctrl is not None)
and (self._colorbar_ctrl in self.controls)
):
self.remove_control(self._colorbar_ctrl)
self._colorbar_ctrl.close()
self._colorbar_widget.close()
if (
"colorbar" in layer_dict.keys()
and layer_dict["colorbar"] in self.controls
):
self.remove_control(layer_dict["colorbar"])
layer_dict["colorbar"] = None
if linear_chk.value:
if (
"legend" in layer_dict.keys()
and layer_dict["legend"] in self.controls
):
self.remove_control(layer_dict["legend"])
layer_dict["legend"] = None
if len(palette.value) > 0 and "," in palette.value:
colors = to_hex_colors(
[color.strip() for color in palette.value.split(",")]
)
self.add_colorbar(
vis_params={
"palette": colors,
"min": value_range.value[0],
"max": value_range.value[1],
},
layer_name=layer_name,
)
elif step_chk.value:
if len(palette.value) > 0 and "," in palette.value:
colors = to_hex_colors(
[color.strip() for color in palette.value.split(",")]
)
labels = [
label.strip()
for label in legend_labels.value.split(",")
]
self.add_legend(
title=legend_title.value,
legend_keys=labels,
legend_colors=colors,
layer_name=layer_name,
)
else:
if radio1.index == 0 and "palette" in vis:
self._colorbar_widget.outputs = ()
with self._colorbar_widget:
_, ax = plt.subplots(figsize=(3, 0.3))
colors = to_hex_colors(vis["palette"])
cmap = mpl.colors.LinearSegmentedColormap.from_list(
"custom", colors, N=256
)
norm = mpl.colors.Normalize(
vmin=vis["min"], vmax=vis["max"]
)
mpl.colorbar.ColorbarBase(
ax, norm=norm, cmap=cmap, orientation="horizontal"
)
plt.show()
if (
"colorbar" in layer_dict.keys()
and layer_dict["colorbar"] in self.controls
):
self.remove_control(layer_dict["colorbar"])
layer_dict["colorbar"] = None
if (
"legend" in layer_dict.keys()
and layer_dict["legend"] in self.controls
):
self.remove_control(layer_dict["legend"])
layer_dict["legend"] = None
def close_btn_clicked(b):
if self._vis_control in self.controls:
self.remove_control(self._vis_control)
self._vis_control = None
self._vis_widget.close()
if (
hasattr(self, "_colorbar_ctrl")
and (self._colorbar_ctrl is not None)
and (self._colorbar_ctrl in self.controls)
):
self.remove_control(self._colorbar_ctrl)
self._colorbar_ctrl = None
self._colorbar_widget.close()
import_btn.on_click(import_btn_clicked)
apply_btn.on_click(apply_btn_clicked)
close_btn.on_click(close_btn_clicked)
color_hbox = widgets.HBox(
[legend_chk, color_picker, add_color, del_color, reset_color]
)
btn_hbox = widgets.HBox([import_btn, apply_btn, close_btn])
gray_box = [
label,
radio_btn,
bands_hbox,
v_spacer,
range_hbox,
opacity,
gamma,
widgets.HBox([classes, colormap]),
palette,
color_hbox,
legend_vbox,
btn_hbox,
]
rgb_box = [
label,
radio_btn,
bands_hbox,
v_spacer,
range_hbox,
opacity,
gamma,
btn_hbox,
]
def legend_chk_changed(change):
if change["new"]:
linear_chk.value = True
legend_vbox.children = [
widgets.HBox([linear_chk, step_chk]),
# legend_title,
# legend_labels,
]
else:
legend_vbox.children = []
legend_chk.observe(legend_chk_changed, "value")
if band_count < 3:
radio1.index = 0
band1_dropdown.layout.width = "300px"
bands_hbox.children = [band1_dropdown]
vis_widget.children = gray_box
legend_chk.value = False
if len(palette.value) > 0 and "," in palette.value:
import matplotlib as mpl
import matplotlib.pyplot as plt
colors = to_hex_colors(
[color.strip() for color in palette.value.split(",")]
)
self._colorbar_widget.outputs = ()
with self._colorbar_widget:
_, ax = plt.subplots(figsize=(3, 0.3))
cmap = mpl.colors.LinearSegmentedColormap.from_list(
"custom", colors, N=256
)
norm = mpl.colors.Normalize(
vmin=value_range.value[0], vmax=value_range.value[1]
)
mpl.colorbar.ColorbarBase(
ax, norm=norm, cmap=cmap, orientation="horizontal"
)
plt.show()
else:
radio2.index = 0
if (sel_bands is None) or (len(sel_bands) < 2):
sel_bands = band_names[0:3]
band1_dropdown.value = sel_bands[0]
band2_dropdown.value = sel_bands[1]
band3_dropdown.value = sel_bands[2]
bands_hbox.children = [
band1_dropdown,
band2_dropdown,
band3_dropdown,
]
vis_widget.children = rgb_box
def radio1_observer(sender):
radio2.unobserve(radio2_observer, names=["value"])
radio2.index = None
radio2.observe(radio2_observer, names=["value"])
band1_dropdown.layout.width = "300px"
bands_hbox.children = [band1_dropdown]
palette.value = ", ".join(layer_palette)
palette.disabled = False
color_picker.disabled = False
add_color.disabled = False
del_color.disabled = False
reset_color.disabled = False
vis_widget.children = gray_box
if len(palette.value) > 0 and "," in palette.value:
colors = [color.strip() for color in palette.value.split(",")]
_, ax = plt.subplots(figsize=(3, 0.3))
cmap = mpl.colors.LinearSegmentedColormap.from_list(
"custom", to_hex_colors(colors), N=256
)
norm = mpl.colors.Normalize(vmin=0, vmax=1)
mpl.colorbar.ColorbarBase(
ax, norm=norm, cmap=cmap, orientation="horizontal"
)
self._colorbar_widget = widgets.Output(
layout=widgets.Layout(height="60px", max_width=max_width)
)
self._colorbar_ctrl = ipyleaflet.WidgetControl(
widget=self._colorbar_widget, position="bottomright"
)
if self._colorbar_ctrl not in self.controls:
self.add(self._colorbar_ctrl)
self._colorbar_widget.outputs = ()
with self._colorbar_widget:
plt.show()
def radio2_observer(sender):
radio1.unobserve(radio1_observer, names=["value"])
radio1.index = None
radio1.observe(radio1_observer, names=["value"])
band1_dropdown.layout.width = dropdown_width
bands_hbox.children = [
band1_dropdown,
band2_dropdown,
band3_dropdown,
]
palette.value = ""
palette.disabled = True
color_picker.disabled = True
add_color.disabled = True
del_color.disabled = True
reset_color.disabled = True
vis_widget.children = rgb_box
if (
self._colorbar_ctrl is not None
and self._colorbar_ctrl in self.controls
):
self.remove_control(self._colorbar_ctrl)
self._colorbar_ctrl.close()
self._colorbar_widget.close()
radio1.observe(radio1_observer, names=["value"])
radio2.observe(radio2_observer, names=["value"])
return vis_widget
elif isinstance(ee_object, ee.FeatureCollection):
vis_widget = widgets.VBox(
layout=widgets.Layout(padding="5px 5px 5px 8px", width="330px")
)
label = widgets.Label(value=f"{layer_name} visualization parameters")
new_layer_name = widgets.Text(
value=f"{layer_name} style",
description="New layer name:",
style={"description_width": "initial"},
)
color = widgets.ColorPicker(
concise=False,
value="#000000",
description="Color:",
layout=widgets.Layout(width="140px"),
style={"description_width": "initial"},
)
color_opacity = widgets.FloatSlider(
value=layer_opacity,
min=0,
max=1,
step=0.01,
description="Opacity:",
continuous_update=True,
readout=False,
# readout_format=".2f",
layout=widgets.Layout(width="130px"),
style={"description_width": "50px"},
)
color_opacity_label = widgets.Label(
style={"description_width": "initial"},
layout=widgets.Layout(padding="0px"),
)
def color_opacity_change(change):
color_opacity_label.value = str(change["new"])
color_opacity.observe(color_opacity_change, names="value")
point_size = widgets.IntText(
value=3,
description="Point size:",
layout=widgets.Layout(width="110px"),
style={"description_width": "initial"},
)
point_shape_options = [
"circle",
"square",
"diamond",
"cross",
"plus",
"pentagram",
"hexagram",
"triangle",
"triangle_up",
"triangle_down",
"triangle_left",
"triangle_right",
"pentagon",
"hexagon",
"star5",
"star6",
]
point_shape = widgets.Dropdown(
options=point_shape_options,
value="circle",
description="Point shape:",
layout=widgets.Layout(width="185px"),
style={"description_width": "initial"},
)
line_width = widgets.IntText(
value=2,
description="Line width:",
layout=widgets.Layout(width="110px"),
style={"description_width": "initial"},
)
line_type = widgets.Dropdown(
options=["solid", "dotted", "dashed"],
value="solid",
description="Line type:",
layout=widgets.Layout(width="185px"),
style={"description_width": "initial"},
)
fill_color = widgets.ColorPicker(
concise=False,
value="#000000",
description="Fill Color:",
layout=widgets.Layout(width="160px"),
style={"description_width": "initial"},
)
fill_color_opacity = widgets.FloatSlider(
value=0.66,
min=0,
max=1,
step=0.01,
description="Opacity:",
continuous_update=True,
readout=False,
# readout_format=".2f",
layout=widgets.Layout(width="110px"),
style={"description_width": "50px"},
)
fill_color_opacity_label = widgets.Label(
style={"description_width": "initial"},
layout=widgets.Layout(padding="0px"),
)
def fill_color_opacity_change(change):
fill_color_opacity_label.value = str(change["new"])
fill_color_opacity.observe(fill_color_opacity_change, names="value")
# widgets.jslink(
# (fill_color_opacity, "value"),
# (fill_color_opacity_label, "value"),
# )
color_picker = widgets.ColorPicker(
concise=False,
value="#000000",
layout=widgets.Layout(width="116px"),
style={"description_width": "initial"},
)
add_color = widgets.Button(
icon="plus",
tooltip="Add a hex color string to the palette",
layout=widgets.Layout(width="32px"),
)
del_color = widgets.Button(
icon="minus",
tooltip="Remove a hex color string from the palette",
layout=widgets.Layout(width="32px"),
)
reset_color = widgets.Button(
icon="eraser",
tooltip="Remove all color strings from the palette",
layout=widgets.Layout(width="34px"),
)
palette = widgets.Text(
value="",
placeholder="List of hex code (RRGGBB) separated by comma",
description="Palette:",
tooltip="Enter a list of hex code (RRGGBB) separated by comma",
layout=widgets.Layout(width="300px"),
style={"description_width": "initial"},
)
legend_title = widgets.Text(
value="Legend",
description="Legend title:",
tooltip="Enter a title for the legend",
layout=widgets.Layout(width="300px"),
style={"description_width": "initial"},
)
legend_labels = widgets.Text(
value="Labels",
description="Legend labels:",
tooltip="Enter a a list of labels for the legend",
layout=widgets.Layout(width="300px"),
style={"description_width": "initial"},
)
def add_color_clicked(b):
if color_picker.value is not None:
if len(palette.value) == 0:
palette.value = color_picker.value[1:]
else:
palette.value += ", " + color_picker.value[1:]
def del_color_clicked(b):
if "," in palette.value:
items = [item.strip() for item in palette.value.split(",")]
palette.value = ", ".join(items[:-1])
else:
palette.value = ""
def reset_color_clicked(b):
palette.value = ""
add_color.on_click(add_color_clicked)
del_color.on_click(del_color_clicked)
reset_color.on_click(reset_color_clicked)
field = widgets.Dropdown(
options=[],
value=None,
description="Field:",
layout=widgets.Layout(width="140px"),
style={"description_width": "initial"},
)
field_values = widgets.Dropdown(
options=[],
value=None,
description="Values:",
layout=widgets.Layout(width="156px"),
style={"description_width": "initial"},
)
classes = widgets.Dropdown(
options=["Any"] + [str(i) for i in range(3, 13)],
description="Classes:",
layout=widgets.Layout(width="115px"),
style={"description_width": "initial"},
)
colormap = widgets.Dropdown(
options=["viridis"],
value="viridis",
description="Colormap:",
layout=widgets.Layout(width="181px"),
style={"description_width": "initial"},
)
def classes_changed(change):
if change["new"]:
selected = change["owner"].value
if colormap.value is not None:
n_class = None
if selected != "Any":
n_class = int(classes.value)
colors = plt.cm.get_cmap(colormap.value, n_class)
cmap_colors = [
mpl.colors.rgb2hex(colors(i))[1:] for i in range(colors.N)
]
_, ax = plt.subplots(figsize=(3, 0.3))
cmap = mpl.colors.LinearSegmentedColormap.from_list(
"custom", to_hex_colors(cmap_colors), N=256
)
norm = mpl.colors.Normalize(vmin=0, vmax=1)
mpl.colorbar.ColorbarBase(
ax, norm=norm, cmap=cmap, orientation="horizontal"
)
palette.value = ", ".join([color for color in cmap_colors])
if self._colorbar_widget is None:
self._colorbar_widget = widgets.Output(
layout=widgets.Layout(
height="60px", max_width=max_width
)
)
if self._colorbar_ctrl is None:
self._colorbar_ctrl = ipyleaflet.WidgetControl(
widget=self._colorbar_widget, position="bottomright"
)
self.add(self._colorbar_ctrl)
colorbar_output = self._colorbar_widget
with colorbar_output:
colorbar_output.outputs = ()
plt.show()
if len(palette.value) > 0 and "," in palette.value:
labels = [
f"Class {i+1}"
for i in range(len(palette.value.split(",")))
]
legend_labels.value = ", ".join(labels)
classes.observe(classes_changed, "value")
def colormap_changed(change):
if change["new"]:
n_class = None
if classes.value != "Any":
n_class = int(classes.value)
colors = plt.cm.get_cmap(colormap.value, n_class)
cmap_colors = [
mpl.colors.rgb2hex(colors(i))[1:] for i in range(colors.N)
]
_, ax = plt.subplots(figsize=(3, 0.3))
cmap = mpl.colors.LinearSegmentedColormap.from_list(
"custom", to_hex_colors(cmap_colors), N=256
)
norm = mpl.colors.Normalize(vmin=0, vmax=1)
mpl.colorbar.ColorbarBase(
ax, norm=norm, cmap=cmap, orientation="horizontal"
)
palette.value = ", ".join(cmap_colors)
if self._colorbar_widget is None:
self._colorbar_widget = widgets.Output(
layout=widgets.Layout(height="60px", max_width=max_width)
)
if self._colorbar_ctrl is None:
self._colorbar_ctrl = ipyleaflet.WidgetControl(
widget=self._colorbar_widget, position="bottomright"
)
self.add(self._colorbar_ctrl)
colorbar_output = self._colorbar_widget
with colorbar_output:
colorbar_output.outputs = ()
plt.show()
# display(colorbar)
if len(palette.value) > 0 and "," in palette.value:
labels = [
f"Class {i+1}" for i in range(len(palette.value.split(",")))
]
legend_labels.value = ", ".join(labels)
colormap.observe(colormap_changed, "value")
btn_width = "97.5px"
import_btn = widgets.Button(
description="Import",
button_style="primary",
tooltip="Import vis params to notebook",
layout=widgets.Layout(width=btn_width),
)
apply_btn = widgets.Button(
description="Apply",
tooltip="Apply vis params to the layer",
layout=widgets.Layout(width=btn_width),
)
close_btn = widgets.Button(
description="Close",
tooltip="Close vis params diaglog",
layout=widgets.Layout(width=btn_width),
)
style_chk = widgets.Checkbox(
value=False,
description="Style by attribute",
indent=False,
layout=widgets.Layout(width="140px"),
)
legend_chk = widgets.Checkbox(
value=False,
description="Legend",
indent=False,
layout=widgets.Layout(width="70px"),
)
compute_label = widgets.Label(value="")
style_vbox = widgets.VBox([widgets.HBox([style_chk, compute_label])])
def style_chk_changed(change):
if change["new"]:
if (
hasattr(self, "_colorbar_ctrl")
and (self._colorbar_ctrl is not None)
and (self._colorbar_ctrl in self.controls)
):
self.remove_control(self._colorbar_ctrl)
self._colorbar_ctrl.close()
self._colorbar_widget.close()
self._colorbar_widget = widgets.Output(
layout=widgets.Layout(height="60px", max_width=max_width)
)
self._colorbar_ctrl = ipyleaflet.WidgetControl(
widget=self._colorbar_widget, position="bottomright"
)
self.add(self._colorbar_ctrl)
fill_color.disabled = True
colormap_options = plt.colormaps()
colormap_options.sort()
colormap.options = colormap_options
colormap.value = "viridis"
style_vbox.children = [
widgets.HBox([style_chk, compute_label]),
widgets.HBox([field, field_values]),
widgets.HBox([classes, colormap]),
palette,
widgets.HBox(
[
legend_chk,
color_picker,
add_color,
del_color,
reset_color,
]
),
]
compute_label.value = "Computing ..."
field.options = (
ee.Feature(ee_object.first()).propertyNames().getInfo()
)
compute_label.value = ""
classes.value = "Any"
legend_chk.value = False
else:
fill_color.disabled = False
style_vbox.children = [widgets.HBox([style_chk, compute_label])]
compute_label.value = ""
if (
hasattr(self, "_colorbar_ctrl")
and (self._colorbar_ctrl is not None)
and (self._colorbar_ctrl in self.controls)
):
self.remove_control(self._colorbar_ctrl)
self._colorbar_ctrl = None
self._colorbar_widget = None
# legend_chk.value = False
style_chk.observe(style_chk_changed, "value")
def legend_chk_changed(change):
if change["new"]:
style_vbox.children = list(style_vbox.children) + [
widgets.VBox([legend_title, legend_labels])
]
if len(palette.value) > 0 and "," in palette.value:
labels = [
f"Class {i+1}" for i in range(len(palette.value.split(",")))
]
legend_labels.value = ", ".join(labels)
else:
style_vbox.children = [
widgets.HBox([style_chk, compute_label]),
widgets.HBox([field, field_values]),
widgets.HBox([classes, colormap]),
palette,
widgets.HBox(
[
legend_chk,
color_picker,
add_color,
del_color,
reset_color,
]
),
]
legend_chk.observe(legend_chk_changed, "value")
def field_changed(change):
if change["new"]:
compute_label.value = "Computing ..."
options = ee_object.aggregate_array(field.value).getInfo()
if options is not None:
options = list(set(options))
options.sort()
field_values.options = options
compute_label.value = ""
field.observe(field_changed, "value")
def get_vis_params():
vis = {}
vis["color"] = color.value[1:] + str(
hex(int(color_opacity.value * 255))
)[2:].zfill(2)
if geometry_type(ee_object) in ["Point", "MultiPoint"]:
vis["pointSize"] = point_size.value
vis["pointShape"] = point_shape.value
vis["width"] = line_width.value
vis["lineType"] = line_type.value
vis["fillColor"] = fill_color.value[1:] + str(
hex(int(fill_color_opacity.value * 255))
)[2:].zfill(2)
return vis
def import_btn_clicked(b):
vis = get_vis_params()
create_code_cell(f"vis_params = {str(vis)}")
def apply_btn_clicked(b):
compute_label.value = "Computing ..."
if new_layer_name.value in self.ee_layer_names:
old_layer = new_layer_name.value
if "legend" in self.ee_layer_dict[old_layer].keys():
legend = self.ee_layer_dict[old_layer]["legend"]
if legend in self.controls:
self.remove_control(legend)
legend.close()
if "colorbar" in self.ee_layer_dict[old_layer].keys():
colorbar = self.ee_layer_dict[old_layer]["colorbar"]
if colorbar in self.controls:
self.remove_control(colorbar)
colorbar.close()
if not style_chk.value:
vis = get_vis_params()
self.addLayer(ee_object.style(**vis), {}, new_layer_name.value)
ee_layer.visible = False
elif (
style_chk.value and len(palette.value) > 0 and "," in palette.value
):
try:
colors = ee.List(
[
color.strip()
+ str(hex(int(fill_color_opacity.value * 255)))[
2:
].zfill(2)
for color in palette.value.split(",")
]
)
arr = ee_object.aggregate_array(field.value).distinct().sort()
fc = ee_object.map(
lambda f: f.set(
{"styleIndex": arr.indexOf(f.get(field.value))}
)
)
step = arr.size().divide(colors.size()).ceil()
fc = fc.map(
lambda f: f.set(
{
"style": {
"color": color.value[1:]
+ str(hex(int(color_opacity.value * 255)))[
2:
].zfill(2),
"pointSize": point_size.value,
"pointShape": point_shape.value,
"width": line_width.value,
"lineType": line_type.value,
"fillColor": colors.get(
ee.Number(
ee.Number(f.get("styleIndex")).divide(
step
)
).floor()
),
}
}
)
)
self.addLayer(
fc.style(**{"styleProperty": "style"}),
{},
f"{new_layer_name.value}",
)
if (
len(palette.value)
and legend_chk.value
and len(legend_labels.value) > 0
):
legend_colors = [
color.strip() for color in palette.value.split(",")
]
legend_keys = [
label.strip()
for label in legend_labels.value.split(",")
]
self.add_legend(
title=legend_title.value,
legend_keys=legend_keys,
legend_colors=legend_colors,
layer_name=new_layer_name.value,
)
except Exception as e:
compute_label.value = "Error: " + str(e)
ee_layer.visible = False
compute_label.value = ""
def close_btn_clicked(b):
self.remove_control(self._vis_control)
self._vis_control.close()
self._vis_widget.close()
if (
hasattr(self, "_colorbar_ctrl")
and (self._colorbar_ctrl is not None)
and (self._colorbar_ctrl in self.controls)
):
self.remove_control(self._colorbar_ctrl)
self._colorbar_ctrl.close()
self._colorbar_widget.close()
import_btn.on_click(import_btn_clicked)
apply_btn.on_click(apply_btn_clicked)
close_btn.on_click(close_btn_clicked)
vis_widget.children = [
label,
new_layer_name,
widgets.HBox([color, color_opacity, color_opacity_label]),
widgets.HBox([point_size, point_shape]),
widgets.HBox([line_width, line_type]),
widgets.HBox(
[fill_color, fill_color_opacity, fill_color_opacity_label]
),
style_vbox,
widgets.HBox([import_btn, apply_btn, close_btn]),
]
if geometry_type(ee_object) in ["Point", "MultiPoint"]:
point_size.disabled = False
point_shape.disabled = False
else:
point_size.disabled = True
point_shape.disabled = True
return vis_widget
def _point_info(self, latlon, decimals=3, return_node=False):
"""Create the ipytree widget for displaying the mouse clicking info.
Args:
latlon (list | tuple): The coordinates (lat, lon) of the point.
decimals (int, optional): Number of decimals to round the coordinates to. Defaults to 3.
return_node (bool, optional): If True, return the ipytree node.
Otherwise, return the ipytree tree widget. Defaults to False.
Returns:
ipytree.Node | ipytree.Tree: The ipytree node or tree widget.
"""
from ipytree import Node, Tree
point_nodes = [
Node(f"Longitude: {latlon[1]}"),
Node(f"Latitude: {latlon[0]}"),
Node(f"Zoom Level: {self.zoom}"),
Node(f"Scale (approx. m/px): {self.get_scale()}"),
]
label = f"Point ({latlon[1]:.{decimals}f}, {latlon[0]:.{decimals}f}) at {int(self.get_scale())}m/px"
root_node = Node(
label, nodes=point_nodes, icon="map", opened=self._expand_point
)
root_node.open_icon = "plus-square"
root_node.open_icon_style = "success"
root_node.close_icon = "minus-square"
root_node.close_icon_style = "info"
if return_node:
return root_node
else:
return Tree(nodes=[root_node])
def _pixels_info(
self, latlon, names=None, visible=True, decimals=2, return_node=False
):
"""Create the ipytree widget for displaying the pixel values at the mouse clicking point.
Args:
latlon (list | tuple): The coordinates (lat, lon) of the point.
names (str | list, optional): The names of the layers to be included. Defaults to None.
visible (bool, optional): Whether to inspect visible layers only. Defaults to True.
decimals (int, optional): Number of decimals to round the pixel values. Defaults to 2.
return_node (bool, optional): If True, return the ipytree node.
Otherwise, return the ipytree tree widget. Defaults to False.
Returns:
ipytree.Node | ipytree.Tree: The ipytree node or tree widget.
"""
from ipytree import Node, Tree
if names is not None:
if isinstance(names, str):
names = [names]
layers = {}
for name in names:
if name in self.ee_layer_names:
layers[name] = self.ee_layer_dict[name]
else:
layers = self.ee_layer_dict
xy = ee.Geometry.Point(latlon[::-1])
sample_scale = self.getScale()
root_node = Node("Pixels", icon="archive")
nodes = []
for layer in layers:
layer_name = layer
ee_object = layers[layer]["ee_object"]
object_type = ee_object.__class__.__name__
if visible:
if not self.ee_layer_dict[layer_name]["ee_layer"].visible:
continue
try:
if isinstance(ee_object, ee.ImageCollection):
ee_object = ee_object.mosaic()
if isinstance(ee_object, ee.Image):
item = ee_object.reduceRegion(
ee.Reducer.first(), xy, sample_scale
).getInfo()
b_name = "band"
if len(item) > 1:
b_name = "bands"
label = f"{layer_name}: {object_type} ({len(item)} {b_name})"
layer_node = Node(label, opened=self._expand_pixels)
keys = sorted(item.keys())
for key in keys:
value = item[key]
if isinstance(value, float):
value = round(value, decimals)
layer_node.add_node(Node(f"{key}: {value}", icon="file"))
nodes.append(layer_node)
except:
pass
root_node.nodes = nodes
root_node.open_icon = "plus-square"
root_node.open_icon_style = "success"
root_node.close_icon = "minus-square"
root_node.close_icon_style = "info"
if return_node:
return root_node
else:
return Tree(nodes=[root_node])
def _objects_info(self, latlon, names=None, visible=True, return_node=False):
"""Create the ipytree widget for displaying the Earth Engine objects at the mouse clicking point.
Args:
latlon (list | tuple): The coordinates (lat, lon) of the point.
names (str | list, optional): The names of the layers to be included. Defaults to None.
visible (bool, optional): Whether to inspect visible layers only. Defaults to True.
return_node (bool, optional): If True, return the ipytree node.
Otherwise, return the ipytree tree widget. Defaults to False.
Returns:
ipytree.Node | ipytree.Tree: The ipytree node or tree widget.
"""
from ipytree import Node, Tree
if names is not None:
if isinstance(names, str):
names = [names]
layers = {}
for name in names:
if name in self.ee_layer_names:
layers[name] = self.ee_layer_dict[name]
else:
layers = self.ee_layer_dict
xy = ee.Geometry.Point(latlon[::-1])
root_node = Node("Objects", icon="archive")
nodes = []
for layer in layers:
layer_name = layer
ee_object = layers[layer]["ee_object"]
if visible:
if not self.ee_layer_dict[layer_name]["ee_layer"].visible:
continue
if isinstance(ee_object, ee.FeatureCollection):
# Check geometry type
geom_type = ee.Feature(ee_object.first()).geometry().type()
lat, lon = latlon
delta = 0.005
bbox = ee.Geometry.BBox(
lon - delta,
lat - delta,
lon + delta,
lat + delta,
)
# Create a bounding box to filter points
xy = ee.Algorithms.If(
geom_type.compareTo(ee.String("Point")),
xy,
bbox,
)
ee_object = ee_object.filterBounds(xy).first()
try:
node = get_info(
ee_object, layer_name, opened=self._expand_objects, return_node=True
)
nodes.append(node)
except:
pass
root_node.nodes = nodes
root_node.open_icon = "plus-square"
root_node.open_icon_style = "success"
root_node.close_icon = "minus-square"
root_node.close_icon_style = "info"
if return_node:
return root_node
else:
return Tree(nodes=[root_node])
def inspect(self, latlon):
"""Create the Inspector GUI.
Args:
latlon (list | tuple): The coordinates (lat, lon) of the point.
Returns:
ipytree.Tree: The ipytree tree widget for the Inspector GUI.
"""
from ipytree import Tree
tree = Tree()
nodes = []
point_node = self._point_info(latlon, return_node=True)
nodes.append(point_node)
pixels_node = self._pixels_info(latlon, return_node=True)
if pixels_node.nodes:
nodes.append(pixels_node)
objects_node = self._objects_info(latlon, return_node=True)
if objects_node.nodes:
nodes.append(objects_node)
tree.nodes = nodes
return tree
def add_inspector(
self,
names=None,
visible=True,
decimals=2,
position="topright",
opened=True,
show_close_button=True,
):
"""Add the Inspector GUI to the map.
Args:
names (str | list, optional): The names of the layers to be included. Defaults to None.
visible (bool, optional): Whether to inspect visible layers only. Defaults to True.
decimals (int, optional): The number of decimal places to round the coordinates. Defaults to 2.
position (str, optional): The position of the Inspector GUI. Defaults to "topright".
opened (bool, optional): Whether the control is opened. Defaults to True.
"""
from .toolbar import ee_inspector_gui
ee_inspector_gui(
self, names, visible, decimals, position, opened, show_close_button
)
def add_layer_manager(
self, position="topright", opened=True, show_close_button=True
):
"""Add the Layer Manager to the map.
Args:
position (str, optional): The position of the Layer Manager. Defaults to "topright".
opened (bool, optional): Whether the control is opened. Defaults to True.
show_close_button (bool, optional): Whether to show the close button. Defaults to True.
"""
from .toolbar import layer_manager_gui
layer_manager_gui(self, position, opened, show_close_button=show_close_button)
def update_layer_manager(self):
"""Update the Layer Manager."""
from .toolbar import layer_manager_gui
self.layer_manager_widget.children = layer_manager_gui(self, return_widget=True)
def add_draw_control(self, position="topleft"):
"""Add a draw control to the map
Args:
position (str, optional): The position of the draw control. Defaults to "topleft".
"""
draw_control = ipyleaflet.DrawControl(
marker={"shapeOptions": {"color": "#3388ff"}},
rectangle={"shapeOptions": {"color": "#3388ff"}},
# circle={"shapeOptions": {"color": "#3388ff"}},
circlemarker={},
edit=True,
remove=True,
position=position,
)
# Handles draw events
def handle_draw(target, action, geo_json):
try:
self._roi_start = True
geom = geojson_to_ee(geo_json, False)
self.user_roi = geom
feature = ee.Feature(geom)
self.draw_last_feature = feature
if not hasattr(self, "_draw_count"):
self._draw_count = 0
if action == "deleted" and len(self.draw_features) > 0:
self.draw_features.remove(feature)
self._draw_count -= 1
else:
self.draw_features.append(feature)
self._draw_count += 1
collection = ee.FeatureCollection(self.draw_features)
self.user_rois = collection
ee_draw_layer = EELeafletTileLayer(
collection, {"color": "blue"}, "Drawn Features", False, 0.5
)
draw_layer_index = self.find_layer_index("Drawn Features")
if draw_layer_index == -1:
self.add(ee_draw_layer)
self.draw_layer = ee_draw_layer
else:
self.substitute_layer(self.draw_layer, ee_draw_layer)
self.draw_layer = ee_draw_layer
self._roi_end = True
self._roi_start = False
except Exception as e:
self._draw_count = 0
self.draw_features = []
self.draw_last_feature = None
self.draw_layer = None
self.user_roi = None
self._roi_start = False
self._roi_end = False
print("There was an error creating Earth Engine Feature.")
raise Exception(e)
draw_control.on_draw(handle_draw)
self.add(draw_control)
self.draw_control = draw_control
def add_draw_control_lite(self, position="topleft"):
"""Add a lite version draw control to the map for the plotting tool.
Args:
position (str, optional): The position of the draw control. Defaults to "topleft".
"""
draw_control_lite = ipyleaflet.DrawControl(
marker={},
rectangle={"shapeOptions": {"color": "#3388ff"}},
circle={"shapeOptions": {"color": "#3388ff"}},
circlemarker={},
polyline={},
polygon={},
edit=False,
remove=False,
position=position,
)
self.draw_control_lite = draw_control_lite
def add_toolbar(self, position="topright", **kwargs):
"""Add a toolbar to the map.
Args:
position (str, optional): The position of the toolbar. Defaults to "topright".
"""
from .toolbar import main_toolbar
main_toolbar(self, position, **kwargs)
def add_plot_gui(self, position="topright", **kwargs):
"""Adds the plot widget to the map.
Args:
position (str, optional): Position of the widget. Defaults to "topright".
"""
from .toolbar import ee_plot_gui
ee_plot_gui(self, position, **kwargs)
def add_gui(
self, name, position="topright", opened=True, show_close_button=True, **kwargs
):
"""Add a GUI to the map.
Args:
name (str): The name of the GUI. Options include "layer_manager", "inspector", "plot", and "timelapse".
position (str, optional): The position of the GUI. Defaults to "topright".
opened (bool, optional): Whether the GUI is opened. Defaults to True.
show_close_button (bool, optional): Whether to show the close button. Defaults to True.
"""
name = name.lower()
if name == "layer_manager":
self.add_layer_manager(position, opened, show_close_button, **kwargs)
elif name == "inspector":
self.add_inspector(
position=position,
opened=opened,
show_close_button=show_close_button,
**kwargs,
)
elif name == "plot":
self.add_plot_gui(position, **kwargs)
elif name == "timelapse":
from .toolbar import timelapse_gui
timelapse_gui(self, **kwargs)
# ******************************************************************************#
# The classes and functions above are the core features of the geemap package. #
# The Earth Engine team and the geemap community will maintain these features. #
# ******************************************************************************#
# ******************************************************************************#
# The classes and functions below are the extra features of the geemap package. #
# The geemap community will maintain these features. #
# ******************************************************************************#
def draw_layer_on_top(self):
"""Move user-drawn feature layer to the top of all layers."""
draw_layer_index = self.find_layer_index(name="Drawn Features")
if draw_layer_index > -1 and draw_layer_index < (len(self.layers) - 1):
layers = list(self.layers)
layers = (
layers[0:draw_layer_index]
+ layers[(draw_layer_index + 1) :]
+ [layers[draw_layer_index]]
)
self.layers = layers
def add_marker(self, location, **kwargs):
"""Adds a marker to the map. More info about marker at https://ipyleaflet.readthedocs.io/en/latest/api_reference/marker.html.
Args:
location (list | tuple): The location of the marker in the format of [lat, lng].
**kwargs: Keyword arguments for the marker.
"""
if isinstance(location, list):
location = tuple(location)
if isinstance(location, tuple):
marker = ipyleaflet.Marker(location=location, **kwargs)
self.add(marker)
else:
raise TypeError("The location must be a list or a tuple.")
def add_wms_layer(
self,
url,
layers,
name=None,
attribution="",
format="image/png",
transparent=True,
opacity=1.0,
shown=True,
**kwargs,
):
"""Add a WMS layer to the map.
Args:
url (str): The URL of the WMS web service.
layers (str): Comma-separated list of WMS layers to show.
name (str, optional): The layer name to use on the layer control. Defaults to None.
attribution (str, optional): The attribution of the data layer. Defaults to ''.
format (str, optional): WMS image format (use ‘image/png’ for layers with transparency). Defaults to 'image/png'.
transparent (bool, optional): If True, the WMS service will return images with transparency. Defaults to True.
opacity (float, optional): The opacity of the layer. Defaults to 1.0.
shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
"""
if name is None:
name = str(layers)
try:
wms_layer = ipyleaflet.WMSLayer(
url=url,
layers=layers,
name=name,
attribution=attribution,
format=format,
transparent=transparent,
opacity=opacity,
visible=shown,
**kwargs,
)
self.add(wms_layer)
except Exception as e:
print("Failed to add the specified WMS TileLayer.")
raise Exception(e)
def zoom_to_me(self, zoom=14, add_marker=True):
"""Zoom to the current device location.
Args:
zoom (int, optional): Zoom level. Defaults to 14.
add_marker (bool, optional): Whether to add a marker of the current device location. Defaults to True.
"""
lat, lon = get_current_latlon()
self.set_center(lon, lat, zoom)
if add_marker:
marker = ipyleaflet.Marker(
location=(lat, lon),
draggable=False,
name="Device location",
)
self.add(marker)
def zoom_to_gdf(self, gdf):
"""Zooms to the bounding box of a GeoPandas GeoDataFrame.
Args:
gdf (GeoDataFrame): A GeoPandas GeoDataFrame.
"""
bounds = gdf.total_bounds
self.zoom_to_bounds(bounds)
def get_bounds(self, asGeoJSON=False):
"""Returns the bounds of the current map view, as a list in the format [west, south, east, north] in degrees.
Args:
asGeoJSON (bool, optional): If true, returns map bounds as GeoJSON. Defaults to False.
Returns:
list | dict: A list in the format [west, south, east, north] in degrees.
"""
bounds = self.bounds
coords = [bounds[0][1], bounds[0][0], bounds[1][1], bounds[1][0]]
if asGeoJSON:
return ee.Geometry.BBox(
bounds[0][1], bounds[0][0], bounds[1][1], bounds[1][0]
).getInfo()
else:
return coords
getBounds = get_bounds
def add_cog_layer(
self,
url,
name="Untitled",
attribution="",
opacity=1.0,
shown=True,
bands=None,
titiler_endpoint=None,
**kwargs,
):
"""Adds a COG TileLayer to the map.
Args:
url (str): The URL of the COG tile layer.
name (str, optional): The layer name to use for the layer. Defaults to 'Untitled'.
attribution (str, optional): The attribution to use. Defaults to ''.
opacity (float, optional): The opacity of the layer. Defaults to 1.
shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
bands (list, optional): A list of bands to use for the layer. Defaults to None.
titiler_endpoint (str, optional): Titiler endpoint. Defaults to "https://titiler.xyz".
**kwargs: Arbitrary keyword arguments, including bidx, expression, nodata, unscale, resampling, rescale, color_formula, colormap, colormap_name, return_mask. See https://developmentseed.org/titiler/endpoints/cog/ and https://cogeotiff.github.io/rio-tiler/colormap/. To select a certain bands, use bidx=[1, 2, 3]
"""
tile_url = cog_tile(url, bands, titiler_endpoint, **kwargs)
bounds = cog_bounds(url, titiler_endpoint)
self.add_tile_layer(tile_url, name, attribution, opacity, shown)
self.fit_bounds([[bounds[1], bounds[0]], [bounds[3], bounds[2]]])
if not hasattr(self, "cog_layer_dict"):
self.cog_layer_dict = {}
params = {
"url": url,
"titizer_endpoint": titiler_endpoint,
"bounds": bounds,
"type": "COG",
}
self.cog_layer_dict[name] = params
def add_cog_mosaic(self, **kwargs):
raise NotImplementedError(
"This function is no longer supported.See https://github.com/giswqs/leafmap/issues/180."
)
def add_stac_layer(
self,
url=None,
collection=None,
item=None,
assets=None,
bands=None,
titiler_endpoint=None,
name="STAC Layer",
attribution="",
opacity=1.0,
shown=True,
**kwargs,
):
"""Adds a STAC TileLayer to the map.
Args:
url (str): HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json
collection (str): The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.
item (str): The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.
assets (str | list): The Microsoft Planetary Computer STAC asset ID, e.g., ["SR_B7", "SR_B5", "SR_B4"].
bands (list): A list of band names, e.g., ["SR_B7", "SR_B5", "SR_B4"]
titiler_endpoint (str, optional): Titiler endpoint, e.g., "https://titiler.xyz", "https://planetarycomputer.microsoft.com/api/data/v1", "planetary-computer", "pc". Defaults to None.
name (str, optional): The layer name to use for the layer. Defaults to 'STAC Layer'.
attribution (str, optional): The attribution to use. Defaults to ''.
opacity (float, optional): The opacity of the layer. Defaults to 1.
shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
"""
tile_url = stac_tile(
url, collection, item, assets, bands, titiler_endpoint, **kwargs
)
bounds = stac_bounds(url, collection, item, titiler_endpoint)
self.add_tile_layer(tile_url, name, attribution, opacity, shown)
self.fit_bounds([[bounds[1], bounds[0]], [bounds[3], bounds[2]]])
if not hasattr(self, "cog_layer_dict"):
self.cog_layer_dict = {}
if assets is None and bands is not None:
assets = bands
params = {
"url": url,
"collection": collection,
"item": item,
"assets": assets,
"bounds": bounds,
"titiler_endpoint": titiler_endpoint,
"type": "STAC",
}
self.cog_layer_dict[name] = params
def add_minimap(self, zoom=5, position="bottomright"):
"""Adds a minimap (overview) to the ipyleaflet map.
Args:
zoom (int, optional): Initial map zoom level. Defaults to 5.
position (str, optional): Position of the minimap. Defaults to "bottomright".
"""
minimap = ipyleaflet.Map(
zoom_control=False,
attribution_control=False,
zoom=zoom,
center=self.center,
layers=[get_basemap("ROADMAP")],
)
minimap.layout.width = "150px"
minimap.layout.height = "150px"
ipyleaflet.link((minimap, "center"), (self, "center"))
minimap_control = ipyleaflet.WidgetControl(widget=minimap, position=position)
self.add(minimap_control)
def marker_cluster(self):
"""Adds a marker cluster to the map and returns a list of ee.Feature, which can be accessed using Map.ee_marker_cluster.
Returns:
object: a list of ee.Feature
"""
coordinates = []
markers = []
marker_cluster = ipyleaflet.MarkerCluster(name="Marker Cluster")
self.last_click = []
self.all_clicks = []
self.ee_markers = []
self.add(marker_cluster)
def handle_interaction(**kwargs):
latlon = kwargs.get("coordinates")
if kwargs.get("type") == "click":
coordinates.append(latlon)
geom = ee.Geometry.Point(latlon[1], latlon[0])
feature = ee.Feature(geom)
self.ee_markers.append(feature)
self.last_click = latlon
self.all_clicks = coordinates
markers.append(ipyleaflet.Marker(location=latlon))
marker_cluster.markers = markers
elif kwargs.get("type") == "mousemove":
pass
# cursor style: https://www.w3schools.com/cssref/pr_class_cursor.asp
self.default_style = {"cursor": "crosshair"}
self.on_interaction(handle_interaction)
def plot_demo(
self,
iterations=20,
plot_type=None,
overlay=False,
position="bottomright",
min_width=None,
max_width=None,
min_height=None,
max_height=None,
**kwargs,
):
"""A demo of interactive plotting using random pixel coordinates.
Args:
iterations (int, optional): How many iterations to run for the demo. Defaults to 20.
plot_type (str, optional): The plot type can be one of "None", "bar", "scatter" or "hist". Defaults to None.
overlay (bool, optional): Whether to overlay plotted lines on the figure. Defaults to False.
position (str, optional): Position of the control, can be ‘bottomleft’, ‘bottomright’, ‘topleft’, or ‘topright’. Defaults to 'bottomright'.
min_width (int, optional): Min width of the widget (in pixels), if None it will respect the content size. Defaults to None.
max_width (int, optional): Max width of the widget (in pixels), if None it will respect the content size. Defaults to None.
min_height (int, optional): Min height of the widget (in pixels), if None it will respect the content size. Defaults to None.
max_height (int, optional): Max height of the widget (in pixels), if None it will respect the content size. Defaults to None.
"""
import numpy as np
import time
if hasattr(self, "random_marker") and self.random_marker is not None:
self.remove_layer(self.random_marker)
image = ee.Image("LANDSAT/LE7_TOA_5YEAR/1999_2003").select([0, 1, 2, 3, 4, 6])
self.addLayer(
image,
{"bands": ["B4", "B3", "B2"], "gamma": 1.4},
"LANDSAT/LE7_TOA_5YEAR/1999_2003",
)
self.setCenter(-50.078877, 25.190030, 3)
band_names = image.bandNames().getInfo()
# band_count = len(band_names)
latitudes = np.random.uniform(30, 48, size=iterations)
longitudes = np.random.uniform(-121, -76, size=iterations)
marker = ipyleaflet.Marker(location=(0, 0))
self.random_marker = marker
self.add(marker)
for i in range(iterations):
try:
coordinate = ee.Geometry.Point([longitudes[i], latitudes[i]])
dict_values = image.sample(coordinate).first().toDictionary().getInfo()
band_values = list(dict_values.values())
title = "{}/{}: Spectral signature at ({}, {})".format(
i + 1,
iterations,
round(latitudes[i], 2),
round(longitudes[i], 2),
)
marker.location = (latitudes[i], longitudes[i])
self.plot(
band_names,
band_values,
plot_type=plot_type,
overlay=overlay,
min_width=min_width,
max_width=max_width,
min_height=min_height,
max_height=max_height,
title=title,
**kwargs,
)
time.sleep(0.3)
except Exception as e:
raise Exception(e)
def plot_raster(
self,
ee_object=None,
sample_scale=None,
plot_type=None,
overlay=False,
position="bottomright",
min_width=None,
max_width=None,
min_height=None,
max_height=None,
**kwargs,
):
"""Interactive plotting of Earth Engine data by clicking on the map.
Args:
ee_object (object, optional): The ee.Image or ee.ImageCollection to sample. Defaults to None.
sample_scale (float, optional): A nominal scale in meters of the projection to sample in. Defaults to None.
plot_type (str, optional): The plot type can be one of "None", "bar", "scatter" or "hist". Defaults to None.
overlay (bool, optional): Whether to overlay plotted lines on the figure. Defaults to False.
position (str, optional): Position of the control, can be ‘bottomleft’, ‘bottomright’, ‘topleft’, or ‘topright’. Defaults to 'bottomright'.
min_width (int, optional): Min width of the widget (in pixels), if None it will respect the content size. Defaults to None.
max_width (int, optional): Max width of the widget (in pixels), if None it will respect the content size. Defaults to None.
min_height (int, optional): Min height of the widget (in pixels), if None it will respect the content size. Defaults to None.
max_height (int, optional): Max height of the widget (in pixels), if None it will respect the content size. Defaults to None.
"""
if hasattr(self, "_plot_control") and self._plot_control is not None:
del self._plot_widget
if self._plot_control in self.controls:
self.remove_control(self._plot_control)
if hasattr(self, "random_marker") and self.random_marker is not None:
self.remove_layer(self.random_marker)
plot_widget = widgets.Output(layout={"border": "1px solid black"})
plot_control = ipyleaflet.WidgetControl(
widget=plot_widget,
position=position,
min_width=min_width,
max_width=max_width,
min_height=min_height,
max_height=max_height,
)
self._plot_widget = plot_widget
self._plot_control = plot_control
self.add(plot_control)
self.default_style = {"cursor": "crosshair"}
msg = "The plot function can only be used on ee.Image or ee.ImageCollection with more than one band."
if (ee_object is None) and len(self.ee_raster_layers) > 0:
ee_object = self.ee_raster_layers[-1]
if isinstance(ee_object, ee.ImageCollection):
ee_object = ee_object.mosaic()
elif isinstance(ee_object, ee.ImageCollection):
ee_object = ee_object.mosaic()
elif not isinstance(ee_object, ee.Image):
print(msg)
return
if sample_scale is None:
sample_scale = self.getScale()
if max_width is None:
max_width = 500
band_names = ee_object.bandNames().getInfo()
coordinates = []
markers = []
marker_cluster = ipyleaflet.MarkerCluster(name="Marker Cluster")
self.last_click = []
self.all_clicks = []
self.add(marker_cluster)
def handle_interaction(**kwargs2):
latlon = kwargs2.get("coordinates")
if kwargs2.get("type") == "click":
try:
coordinates.append(latlon)
self.last_click = latlon
self.all_clicks = coordinates
markers.append(ipyleaflet.Marker(location=latlon))
marker_cluster.markers = markers
self.default_style = {"cursor": "wait"}
xy = ee.Geometry.Point(latlon[::-1])
dict_values = (
ee_object.sample(xy, scale=sample_scale)
.first()
.toDictionary()
.getInfo()
)
band_values = list(dict_values.values())
self.plot(
band_names,
band_values,
plot_type=plot_type,
overlay=overlay,
min_width=min_width,
max_width=max_width,
min_height=min_height,
max_height=max_height,
**kwargs,
)
self.default_style = {"cursor": "crosshair"}
except Exception as e:
if self._plot_widget is not None:
with self._plot_widget:
self._plot_widget.outputs = ()
print("No data for the clicked location.")
else:
print(e)
self.default_style = {"cursor": "crosshair"}
self.on_interaction(handle_interaction)
def add_marker_cluster(self, event="click", add_marker=True):
"""Captures user inputs and add markers to the map.
Args:
event (str, optional): [description]. Defaults to 'click'.
add_marker (bool, optional): If True, add markers to the map. Defaults to True.
Returns:
object: a marker cluster.
"""
coordinates = []
markers = []
marker_cluster = ipyleaflet.MarkerCluster(name="Marker Cluster")
self.last_click = []
self.all_clicks = []
if add_marker:
self.add(marker_cluster)
def handle_interaction(**kwargs):
latlon = kwargs.get("coordinates")
if event == "click" and kwargs.get("type") == "click":
coordinates.append(latlon)
self.last_click = latlon
self.all_clicks = coordinates
if add_marker:
markers.append(ipyleaflet.Marker(location=latlon))
marker_cluster.markers = markers
elif kwargs.get("type") == "mousemove":
pass
# cursor style: https://www.w3schools.com/cssref/pr_class_cursor.asp
self.default_style = {"cursor": "crosshair"}
self.on_interaction(handle_interaction)
def set_control_visibility(
self, layerControl=True, fullscreenControl=True, latLngPopup=True
):
"""Sets the visibility of the controls on the map.
Args:
layerControl (bool, optional): Whether to show the control that allows the user to toggle layers on/off. Defaults to True.
fullscreenControl (bool, optional): Whether to show the control that allows the user to make the map full-screen. Defaults to True.
latLngPopup (bool, optional): Whether to show the control that pops up the Lat/lon when the user clicks on the map. Defaults to True.
"""
pass
setControlVisibility = set_control_visibility
def split_map(
self,
left_layer="HYBRID",
right_layer="ROADMAP",
zoom_control=True,
fullscreen_control=True,
layer_control=True,
add_close_button=False,
left_label=None,
right_label=None,
left_position="bottomleft",
right_position="bottomright",
widget_layout=None,
**kwargs,
):
"""Adds split map.
Args:
left_layer (str, optional): The layer tile layer. Defaults to 'HYBRID'.
right_layer (str, optional): The right tile layer. Defaults to 'ROADMAP'.
zoom_control (bool, optional): Whether to show the zoom control. Defaults to True.
fullscreen_control (bool, optional): Whether to show the full screen control. Defaults to True.
layer_control (bool, optional): Whether to show the layer control. Defaults to True.
add_close_button (bool, optional): Whether to add a close button. Defaults to False.
left_label (str, optional): The label for the left map. Defaults to None.
right_label (str, optional): The label for the right map. Defaults to None.
left_position (str, optional): The position of the left label. Defaults to 'bottomleft'.
right_position (str, optional): The position of the right label. Defaults to 'bottomright'.
widget_layout (str, optional): The layout of the label widget, such as ipywidgets.Layout(padding="0px 4px 0px 4px"). Defaults to None.
kwargs: Other arguments for ipyleaflet.TileLayer.
"""
if "max_zoom" not in kwargs:
kwargs["max_zoom"] = 100
if "max_native_zoom" not in kwargs:
kwargs["max_native_zoom"] = 100
try:
controls = self.controls
layers = self.layers
self.clear_controls()
if zoom_control:
self.add(ipyleaflet.ZoomControl())
if fullscreen_control:
self.add(ipyleaflet.FullScreenControl())
if left_label is not None:
left_name = left_label
else:
left_name = "Left Layer"
if right_label is not None:
right_name = right_label
else:
right_name = "Right Layer"
if "attribution" not in kwargs:
kwargs["attribution"] = " "
if left_layer in basemaps.keys():
left_layer = get_basemap(left_layer)
elif isinstance(left_layer, str):
if left_layer.startswith("http") and left_layer.endswith(".tif"):
url = cog_tile(left_layer)
left_layer = ipyleaflet.TileLayer(
url=url,
name=left_name,
**kwargs,
)
else:
left_layer = ipyleaflet.TileLayer(
url=left_layer,
name=left_name,
**kwargs,
)
elif isinstance(left_layer, ipyleaflet.TileLayer):
pass
else:
raise ValueError(
f"left_layer must be one of the following: {', '.join(basemaps.keys())} or a string url to a tif file."
)
if right_layer in basemaps.keys():
right_layer = get_basemap(right_layer)
elif isinstance(right_layer, str):
if right_layer.startswith("http") and right_layer.endswith(".tif"):
url = cog_tile(right_layer)
right_layer = ipyleaflet.TileLayer(
url=url,
name=right_name,
**kwargs,
)
else:
right_layer = ipyleaflet.TileLayer(
url=right_layer,
name=right_name,
**kwargs,
)
elif isinstance(right_layer, ipyleaflet.TileLayer):
pass
else:
raise ValueError(
f"right_layer must be one of the following: {', '.join(basemaps.keys())} or a string url to a tif file."
)
control = ipyleaflet.SplitMapControl(
left_layer=left_layer, right_layer=right_layer
)
self.add(control)
self.dragging = False
if left_label is not None:
if widget_layout is None:
widget_layout = widgets.Layout(padding="0px 4px 0px 4px")
left_widget = widgets.HTML(value=left_label, layout=widget_layout)
left_control = ipyleaflet.WidgetControl(
widget=left_widget, position=left_position
)
self.add(left_control)
if right_label is not None:
if widget_layout is None:
widget_layout = widgets.Layout(padding="0px 4px 0px 4px")
right_widget = widgets.HTML(value=right_label, layout=widget_layout)
right_control = ipyleaflet.WidgetControl(
widget=right_widget, position=right_position
)
self.add(right_control)
close_button = widgets.ToggleButton(
value=False,
tooltip="Close split-panel map",
icon="times",
layout=widgets.Layout(
height="28px", width="28px", padding="0px 0px 0px 4px"
),
)
def close_btn_click(change):
if change["new"]:
self.controls = controls
self.layers = layers[:-1]
self.add(layers[-1])
if left_label is not None:
self.remove_control(left_control)
if right_label is not None:
self.remove_control(right_control)
close_button.observe(close_btn_click, "value")
close_control = ipyleaflet.WidgetControl(
widget=close_button, position="bottomright"
)
if add_close_button:
self.add(close_control)
if layer_control:
self.addLayerControl()
except Exception as e:
print("The provided layers are invalid!")
raise ValueError(e)
def ts_inspector(
self,
left_ts,
left_names=None,
left_vis={},
left_index=0,
right_ts=None,
right_names=None,
right_vis=None,
right_index=-1,
width="130px",
date_format="YYYY-MM-dd",
add_close_button=False,
**kwargs,
):
"""Creates a split-panel map for inspecting timeseries images.
Args:
left_ts (object): An ee.ImageCollection to show on the left panel.
left_names (list): A list of names to show under the left dropdown.
left_vis (dict, optional): Visualization parameters for the left layer. Defaults to {}.
left_index (int, optional): The index of the left layer to show. Defaults to 0.
right_ts (object): An ee.ImageCollection to show on the right panel.
right_names (list): A list of names to show under the right dropdown.
right_vis (dict, optional): Visualization parameters for the right layer. Defaults to {}.
right_index (int, optional): The index of the right layer to show. Defaults to -1.
width (str, optional): The width of the dropdown list. Defaults to '130px'.
date_format (str, optional): The date format to show in the dropdown. Defaults to 'YYYY-MM-dd'.
add_close_button (bool, optional): Whether to show the close button. Defaults to False.
"""
controls = self.controls
layers = self.layers
if left_names is None:
left_names = image_dates(left_ts, date_format=date_format).getInfo()
if right_ts is None:
right_ts = left_ts
if right_names is None:
right_names = left_names
if right_vis is None:
right_vis = left_vis
left_count = int(left_ts.size().getInfo())
right_count = int(right_ts.size().getInfo())
if left_count != len(left_names):
print(
"The number of images in left_ts must match the number of layer names in left_names."
)
return
if right_count != len(right_names):
print(
"The number of images in right_ts must match the number of layer names in right_names."
)
return
left_layer = ipyleaflet.TileLayer(
url="https://mt1.google.com/vt/lyrs=m&x={x}&y={y}&z={z}",
attribution="Google",
name="Google Maps",
)
right_layer = ipyleaflet.TileLayer(
url="https://mt1.google.com/vt/lyrs=m&x={x}&y={y}&z={z}",
attribution="Google",
name="Google Maps",
)
self.clear_controls()
left_dropdown = widgets.Dropdown(options=left_names, value=None)
right_dropdown = widgets.Dropdown(options=right_names, value=None)
left_dropdown.layout.max_width = width
right_dropdown.layout.max_width = width
left_control = ipyleaflet.WidgetControl(
widget=left_dropdown, position="topleft"
)
right_control = ipyleaflet.WidgetControl(
widget=right_dropdown, position="topright"
)
self.add(left_control)
self.add(right_control)
self.add(ipyleaflet.ZoomControl(position="topleft"))
self.add(ipyleaflet.ScaleControl(position="bottomleft"))
self.add(ipyleaflet.FullScreenControl())
def left_dropdown_change(change):
left_dropdown_index = left_dropdown.index
if left_dropdown_index is not None and left_dropdown_index >= 0:
try:
if isinstance(left_ts, ee.ImageCollection):
left_image = left_ts.toList(left_ts.size()).get(
left_dropdown_index
)
elif isinstance(left_ts, ee.List):
left_image = left_ts.get(left_dropdown_index)
else:
print("The left_ts argument must be an ImageCollection.")
return
if isinstance(left_image, ee.ImageCollection):
left_image = ee.Image(left_image.mosaic())
elif isinstance(left_image, ee.Image):
pass
else:
left_image = ee.Image(left_image)
left_image = EELeafletTileLayer(
left_image, left_vis, left_names[left_dropdown_index]
)
left_layer.url = left_image.url
except Exception as e:
print(e)
return
left_dropdown.observe(left_dropdown_change, names="value")
def right_dropdown_change(change):
right_dropdown_index = right_dropdown.index
if right_dropdown_index is not None and right_dropdown_index >= 0:
try:
if isinstance(right_ts, ee.ImageCollection):
right_image = right_ts.toList(left_ts.size()).get(
right_dropdown_index
)
elif isinstance(right_ts, ee.List):
right_image = right_ts.get(right_dropdown_index)
else:
print("The left_ts argument must be an ImageCollection.")
return
if isinstance(right_image, ee.ImageCollection):
right_image = ee.Image(right_image.mosaic())
elif isinstance(right_image, ee.Image):
pass
else:
right_image = ee.Image(right_image)
right_image = EELeafletTileLayer(
right_image,
right_vis,
right_names[right_dropdown_index],
)
right_layer.url = right_image.url
except Exception as e:
print(e)
return
right_dropdown.observe(right_dropdown_change, names="value")
if left_index is not None:
left_dropdown.value = left_names[left_index]
if right_index is not None:
right_dropdown.value = right_names[right_index]
close_button = widgets.ToggleButton(
value=False,
tooltip="Close the tool",
icon="times",
# button_style="primary",
layout=widgets.Layout(
height="28px", width="28px", padding="0px 0px 0px 4px"
),
)
def close_btn_click(change):
if change["new"]:
self.controls = controls
self.clear_layers()
self.layers = layers
close_button.observe(close_btn_click, "value")
close_control = ipyleaflet.WidgetControl(
widget=close_button, position="bottomright"
)
try:
split_control = ipyleaflet.SplitMapControl(
left_layer=left_layer, right_layer=right_layer
)
self.add(split_control)
self.dragging = False
if add_close_button:
self.add(close_control)
except Exception as e:
raise Exception(e)
def basemap_demo(self):
"""A demo for using geemap basemaps."""
dropdown = widgets.Dropdown(
options=list(basemaps.keys()),
value="HYBRID",
description="Basemaps",
)
def on_click(change):
basemap_name = change["new"]
old_basemap = self.layers[-1]
self.substitute_layer(old_basemap, get_basemap(basemaps[basemap_name]))
dropdown.observe(on_click, "value")
basemap_control = ipyleaflet.WidgetControl(widget=dropdown, position="topright")
self.add(basemap_control)
def add_colorbar_branca(
self,
colors,
vmin=0,
vmax=1.0,
index=None,
caption="",
categorical=False,
step=None,
height="45px",
transparent_bg=False,
position="bottomright",
layer_name=None,
**kwargs,
):
"""Add a branca colorbar to the map.
Args:
colors (list): The set of colors to be used for interpolation. Colors can be provided in the form: * tuples of RGBA ints between 0 and 255 (e.g: (255, 255, 0) or (255, 255, 0, 255)) * tuples of RGBA floats between 0. and 1. (e.g: (1.,1.,0.) or (1., 1., 0., 1.)) * HTML-like string (e.g: “#ffff00) * a color name or shortcut (e.g: “y” or “yellow”)
vmin (int, optional): The minimal value for the colormap. Values lower than vmin will be bound directly to colors[0].. Defaults to 0.
vmax (float, optional): The maximal value for the colormap. Values higher than vmax will be bound directly to colors[-1]. Defaults to 1.0.
index (list, optional):The values corresponding to each color. It has to be sorted, and have the same length as colors. If None, a regular grid between vmin and vmax is created.. Defaults to None.
caption (str, optional): The caption for the colormap. Defaults to "".
categorical (bool, optional): Whether or not to create a categorical colormap. Defaults to False.
step (int, optional): The step to split the LinearColormap into a StepColormap. Defaults to None.
height (str, optional): The height of the colormap widget. Defaults to "45px".
transparent_bg (bool, optional): Whether to use transparent background for the colormap widget. Defaults to True.
position (str, optional): The position for the colormap widget. Defaults to "bottomright".
layer_name (str, optional): Layer name of the colorbar to be associated with. Defaults to None.
"""
from branca.colormap import LinearColormap
output = widgets.Output()
output.layout.height = height
if "width" in kwargs:
output.layout.width = kwargs["width"]
if isinstance(colors, Box):
try:
colors = list(colors["default"])
except Exception as e:
print("The provided color list is invalid.")
raise Exception(e)
if all(len(color) == 6 for color in colors):
colors = ["#" + color for color in colors]
colormap = LinearColormap(
colors=colors, index=index, vmin=vmin, vmax=vmax, caption=caption
)
if categorical:
if step is not None:
colormap = colormap.to_step(step)
elif index is not None:
colormap = colormap.to_step(len(index) - 1)
else:
colormap = colormap.to_step(3)
colormap_ctrl = ipyleaflet.WidgetControl(
widget=output,
position=position,
transparent_bg=transparent_bg,
**kwargs,
)
with output:
output.outputs = ()
display(colormap)
self._colorbar = colormap_ctrl
self.add(colormap_ctrl)
if not hasattr(self, "colorbars"):
self.colorbars = [colormap_ctrl]
else:
self.colorbars.append(colormap_ctrl)
if layer_name in self.ee_layer_names:
self.ee_layer_dict[layer_name]["colorbar"] = colormap_ctrl
def image_overlay(self, url, bounds, name):
"""Overlays an image from the Internet or locally on the map.
Args:
url (str): http URL or local file path to the image.
bounds (tuple): bounding box of the image in the format of (lower_left(lat, lon), upper_right(lat, lon)), such as ((13, -130), (32, -100)).
name (str): name of the layer to show on the layer control.
"""
from base64 import b64encode
from io import BytesIO
from PIL import Image, ImageSequence
try:
if not url.startswith("http"):
if not os.path.exists(url):
print("The provided file does not exist.")
return
ext = os.path.splitext(url)[1][1:] # file extension
image = Image.open(url)
f = BytesIO()
if ext.lower() == "gif":
frames = []
# Loop over each frame in the animated image
for frame in ImageSequence.Iterator(image):
frame = frame.convert("RGBA")
b = BytesIO()
frame.save(b, format="gif")
frame = Image.open(b)
frames.append(frame)
frames[0].save(
f,
format="GIF",
save_all=True,
append_images=frames[1:],
loop=0,
)
else:
image.save(f, ext)
data = b64encode(f.getvalue())
data = data.decode("ascii")
url = "data:image/{};base64,".format(ext) + data
img = ipyleaflet.ImageOverlay(url=url, bounds=bounds, name=name)
self.add(img)
except Exception as e:
print(e)
def video_overlay(self, url, bounds, name="Video"):
"""Overlays a video from the Internet on the map.
Args:
url (str): http URL of the video, such as "https://www.mapbox.com/bites/00188/patricia_nasa.webm"
bounds (tuple): bounding box of the video in the format of (lower_left(lat, lon), upper_right(lat, lon)), such as ((13, -130), (32, -100)).
name (str): name of the layer to show on the layer control.
"""
try:
video = ipyleaflet.VideoOverlay(url=url, bounds=bounds, name=name)
self.add(video)
except Exception as e:
print(e)
def add_landsat_ts_gif(
self,
layer_name="Timelapse",
roi=None,
label=None,
start_year=1984,
end_year=2021,
start_date="06-10",
end_date="09-20",
bands=["NIR", "Red", "Green"],
vis_params=None,
dimensions=768,
frames_per_second=10,
font_size=30,
font_color="white",
add_progress_bar=True,
progress_bar_color="white",
progress_bar_height=5,
out_gif=None,
download=False,
apply_fmask=True,
nd_bands=None,
nd_threshold=0,
nd_palette=["black", "blue"],
):
"""Adds a Landsat timelapse to the map.
Args:
layer_name (str, optional): Layer name to show under the layer control. Defaults to 'Timelapse'.
roi (object, optional): Region of interest to create the timelapse. Defaults to None.
label (str, optional): A label to show on the GIF, such as place name. Defaults to None.
start_year (int, optional): Starting year for the timelapse. Defaults to 1984.
end_year (int, optional): Ending year for the timelapse. Defaults to 2021.
start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
bands (list, optional): Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'pixel_qa']. Defaults to ['NIR', 'Red', 'Green'].
vis_params (dict, optional): Visualization parameters. Defaults to None.
dimensions (int, optional): a number or pair of numbers in format WIDTHxHEIGHT) Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
frames_per_second (int, optional): Animation speed. Defaults to 10.
font_size (int, optional): Font size of the animated text and label. Defaults to 30.
font_color (str, optional): Font color of the animated text and label. Defaults to 'black'.
add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
out_gif (str, optional): File path to the output animated GIF. Defaults to None.
download (bool, optional): Whether to download the gif. Defaults to False.
apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
nd_bands (list, optional): A list of names specifying the bands to use, e.g., ['Green', 'SWIR1']. The normalized difference is computed as (first − second) / (first + second). Note that negative input values are forced to 0 so that the result is confined to the range (-1, 1).
nd_threshold (float, optional): The threshold for extacting pixels from the normalized difference band.
nd_palette (str, optional): The color palette to use for displaying the normalized difference band.
"""
try:
if roi is None:
if self.draw_last_feature is not None:
feature = self.draw_last_feature
roi = feature.geometry()
else:
roi = ee.Geometry.Polygon(
[
[
[-115.471773, 35.892718],
[-115.471773, 36.409454],
[-114.271283, 36.409454],
[-114.271283, 35.892718],
[-115.471773, 35.892718],
]
],
None,
False,
)
elif isinstance(roi, ee.Feature) or isinstance(roi, ee.FeatureCollection):
roi = roi.geometry()
elif isinstance(roi, ee.Geometry):
pass
else:
print("The provided roi is invalid. It must be an ee.Geometry")
return
geojson = ee_to_geojson(roi)
bounds = minimum_bounding_box(geojson)
geojson = adjust_longitude(geojson)
roi = ee.Geometry(geojson)
in_gif = landsat_timelapse(
roi=roi,
out_gif=out_gif,
start_year=start_year,
end_year=end_year,
start_date=start_date,
end_date=end_date,
bands=bands,
vis_params=vis_params,
dimensions=dimensions,
frames_per_second=frames_per_second,
apply_fmask=apply_fmask,
nd_bands=nd_bands,
nd_threshold=nd_threshold,
nd_palette=nd_palette,
font_size=font_size,
font_color=font_color,
progress_bar_color=progress_bar_color,
progress_bar_height=progress_bar_height,
)
in_nd_gif = in_gif.replace(".gif", "_nd.gif")
if nd_bands is not None:
add_text_to_gif(
in_nd_gif,
in_nd_gif,
xy=("2%", "2%"),
text_sequence=start_year,
font_size=font_size,
font_color=font_color,
duration=int(1000 / frames_per_second),
add_progress_bar=add_progress_bar,
progress_bar_color=progress_bar_color,
progress_bar_height=progress_bar_height,
)
if label is not None:
add_text_to_gif(
in_gif,
in_gif,
xy=("2%", "90%"),
text_sequence=label,
font_size=font_size,
font_color=font_color,
duration=int(1000 / frames_per_second),
add_progress_bar=add_progress_bar,
progress_bar_color=progress_bar_color,
progress_bar_height=progress_bar_height,
)
# if nd_bands is not None:
# add_text_to_gif(in_nd_gif, in_nd_gif, xy=('2%', '90%'), text_sequence=label,
# font_size=font_size, font_color=font_color, duration=int(1000 / frames_per_second), add_progress_bar=add_progress_bar, progress_bar_color=progress_bar_color, progress_bar_height=progress_bar_height)
if is_tool("ffmpeg"):
reduce_gif_size(in_gif)
if nd_bands is not None:
reduce_gif_size(in_nd_gif)
print("Adding GIF to the map ...")
self.image_overlay(url=in_gif, bounds=bounds, name=layer_name)
if nd_bands is not None:
self.image_overlay(
url=in_nd_gif, bounds=bounds, name=layer_name + " ND"
)
print("The timelapse has been added to the map.")
if download:
link = create_download_link(
in_gif,
title="Click here to download the Landsat timelapse: ",
)
display(link)
if nd_bands is not None:
link2 = create_download_link(
in_nd_gif,
title="Click here to download the Normalized Difference Index timelapse: ",
)
display(link2)
except Exception as e:
raise Exception(e)
def to_html(
self,
filename=None,
title="My Map",
width="100%",
height="880px",
add_layer_control=True,
**kwargs,
):
"""Saves the map as an HTML file.
Args:
filename (str, optional): The output file path to the HTML file.
title (str, optional): The title of the HTML file. Defaults to 'My Map'.
width (str, optional): The width of the map in pixels or percentage. Defaults to '100%'.
height (str, optional): The height of the map in pixels. Defaults to '880px'.
add_layer_control (bool, optional): Whether to add the LayersControl. Defaults to True.
"""
try:
save = True
if filename is not None:
if not filename.endswith(".html"):
raise ValueError("The output file extension must be html.")
filename = os.path.abspath(filename)
out_dir = os.path.dirname(filename)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
else:
filename = os.path.abspath(random_string() + ".html")
save = False
if add_layer_control and self.layer_control is None:
layer_control = ipyleaflet.LayersControl(position="topright")
self.layer_control = layer_control
self.add(layer_control)
before_width = self.layout.width
before_height = self.layout.height
if not isinstance(width, str):
print("width must be a string.")
return
elif width.endswith("px") or width.endswith("%"):
pass
else:
print("width must end with px or %")
return
if not isinstance(height, str):
print("height must be a string.")
return
elif not height.endswith("px"):
print("height must end with px")
return
self.layout.width = width
self.layout.height = height
self.save(filename, title=title, **kwargs)
self.layout.width = before_width
self.layout.height = before_height
if not save:
out_html = ""
with open(filename) as f:
lines = f.readlines()
out_html = "".join(lines)
os.remove(filename)
return out_html
except Exception as e:
raise Exception(e)
def to_image(self, filename=None, monitor=1):
"""Saves the map as a PNG or JPG image.
Args:
filename (str, optional): The output file path to the image. Defaults to None.
monitor (int, optional): The monitor to take the screenshot. Defaults to 1.
"""
self.screenshot = None
if filename is None:
filename = os.path.join(os.getcwd(), "my_map.png")
if filename.endswith(".png") or filename.endswith(".jpg"):
pass
else:
print("The output file must be a PNG or JPG image.")
return
work_dir = os.path.dirname(filename)
if not os.path.exists(work_dir):
os.makedirs(work_dir)
screenshot = screen_capture(filename, monitor)
self.screenshot = screenshot
def toolbar_reset(self):
"""Reset the toolbar so that no tool is selected."""
if hasattr(self, "_toolbar"):
toolbar_grid = self._toolbar
if toolbar_grid is not None:
for tool in toolbar_grid.children:
tool.value = False
def add_raster(
self,
source,
band=None,
palette=None,
vmin=None,
vmax=None,
nodata=None,
attribution=None,
layer_name="Local COG",
zoom_to_layer=True,
**kwargs,
):
"""Add a local raster dataset to the map.
If you are using this function in JupyterHub on a remote server (e.g., Binder, Microsoft Planetary Computer) and
if the raster does not render properly, try installing jupyter-server-proxy using `pip install jupyter-server-proxy`,
then running the following code before calling this function. For more info, see https://bit.ly/3JbmF93.
import os
os.environ['LOCALTILESERVER_CLIENT_PREFIX'] = 'proxy/{port}'
Args:
source (str): The path to the GeoTIFF file or the URL of the Cloud Optimized GeoTIFF.
band (int, optional): The band to use. Band indexing starts at 1. Defaults to None.
palette (str, optional): The name of the color palette from `palettable` to use when plotting a single band. See https://jiffyclub.github.io/palettable. Default is greyscale
vmin (float, optional): The minimum value to use when colormapping the palette when plotting a single band. Defaults to None.
vmax (float, optional): The maximum value to use when colormapping the palette when plotting a single band. Defaults to None.
nodata (float, optional): The value from the band to use to interpret as not valid data. Defaults to None.
attribution (str, optional): Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.
layer_name (str, optional): The layer name to use. Defaults to 'Local COG'.
zoom_to_layer (bool, optional): Whether to zoom to the extent of the layer. Defaults to True.
"""
tile_layer, tile_client = get_local_tile_layer(
source,
band=band,
palette=palette,
vmin=vmin,
vmax=vmax,
nodata=nodata,
attribution=attribution,
layer_name=layer_name,
return_client=True,
**kwargs,
)
self.add(tile_layer)
bounds = tile_client.bounds() # [ymin, ymax, xmin, xmax]
bounds = (
bounds[2],
bounds[0],
bounds[3],
bounds[1],
) # [minx, miny, maxx, maxy]
if zoom_to_layer:
self.zoom_to_bounds(bounds)
arc_add_layer(tile_layer.url, layer_name, True, 1.0)
if zoom_to_layer:
arc_zoom_to_extent(bounds[0], bounds[1], bounds[2], bounds[3])
if not hasattr(self, "cog_layer_dict"):
self.cog_layer_dict = {}
band_names = list(tile_client.metadata()["bands"].keys())
params = {
"tile_layer": tile_layer,
"tile_client": tile_client,
"band": band,
"band_names": band_names,
"bounds": bounds,
"type": "LOCAL",
}
self.cog_layer_dict[layer_name] = params
add_local_tile = add_raster
def add_remote_tile(
self,
source,
band=None,
palette=None,
vmin=None,
vmax=None,
nodata=None,
attribution=None,
layer_name=None,
**kwargs,
):
"""Add a remote Cloud Optimized GeoTIFF (COG) to the map.
Args:
source (str): The path to the remote Cloud Optimized GeoTIFF.
band (int, optional): The band to use. Band indexing starts at 1. Defaults to None.
palette (str, optional): The name of the color palette from `palettable` to use when plotting a single band. See https://jiffyclub.github.io/palettable. Default is greyscale
vmin (float, optional): The minimum value to use when colormapping the palette when plotting a single band. Defaults to None.
vmax (float, optional): The maximum value to use when colormapping the palette when plotting a single band. Defaults to None.
nodata (float, optional): The value from the band to use to interpret as not valid data. Defaults to None.
attribution (str, optional): Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.
layer_name (str, optional): The layer name to use. Defaults to None.
"""
if isinstance(source, str) and source.startswith("http"):
self.add_raster(
source,
band=band,
palette=palette,
vmin=vmin,
vmax=vmax,
nodata=nodata,
attribution=attribution,
layer_name=layer_name,
**kwargs,
)
else:
raise Exception("The source must be a URL.")
def remove_drawn_features(self):
"""Removes user-drawn geometries from the map"""
if self.draw_layer is not None:
self.remove_layer(self.draw_layer)
self._draw_count = 0
self.draw_features = []
self.draw_last_feature = None
self.draw_layer = None
self.user_roi = None
self.user_rois = None
self._chart_values = []
self._chart_points = []
self._chart_labels = None
if self.draw_control is not None:
self.draw_control.clear()
def remove_last_drawn(self):
"""Removes user-drawn geometries from the map"""
if self.draw_layer is not None:
collection = ee.FeatureCollection(self.draw_features[:-1])
ee_draw_layer = EELeafletTileLayer(
collection, {"color": "blue"}, "Drawn Features", True, 0.5
)
if self._draw_count == 1:
self.remove_drawn_features()
else:
self.substitute_layer(self.draw_layer, ee_draw_layer)
self.draw_layer = ee_draw_layer
self._draw_count -= 1
self.draw_features = self.draw_features[:-1]
self.draw_last_feature = self.draw_features[-1]
self.draw_layer = ee_draw_layer
self.user_roi = ee.Feature(
collection.toList(collection.size()).get(
collection.size().subtract(1)
)
).geometry()
self.user_rois = collection
self._chart_values = self._chart_values[:-1]
self._chart_points = self._chart_points[:-1]
# self._chart_labels = None
def extract_values_to_points(self, filename):
"""Exports pixel values to a csv file based on user-drawn geometries.
Args:
filename (str): The output file path to the csv file or shapefile.
"""
import csv
filename = os.path.abspath(filename)
allowed_formats = ["csv", "shp"]
ext = filename[-3:]
if ext not in allowed_formats:
print(
"The output file must be one of the following: {}".format(
", ".join(allowed_formats)
)
)
return
out_dir = os.path.dirname(filename)
out_csv = filename[:-3] + "csv"
out_shp = filename[:-3] + "shp"
if not os.path.exists(out_dir):
os.makedirs(out_dir)
count = len(self._chart_points)
out_list = []
if count > 0:
header = ["id", "longitude", "latitude"] + self._chart_labels
out_list.append(header)
for i in range(0, count):
id = i + 1
line = [id] + self._chart_points[i] + self._chart_values[i]
out_list.append(line)
with open(out_csv, "w", newline="") as f:
writer = csv.writer(f)
writer.writerows(out_list)
if ext == "csv":
print(f"The csv file has been saved to: {out_csv}")
else:
csv_to_shp(out_csv, out_shp)
print(f"The shapefile has been saved to: {out_shp}")
def add_styled_vector(
self,
ee_object,
column,
palette,
layer_name="Untitled",
shown=True,
opacity=1.0,
**kwargs,
):
"""Adds a styled vector to the map.
Args:
ee_object (object): An ee.FeatureCollection.
column (str): The column name to use for styling.
palette (list | dict): The palette (e.g., list of colors or a dict containing label and color pairs) to use for styling.
layer_name (str, optional): The name to be used for the new layer. Defaults to "Untitled".
shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
opacity (float, optional): The opacity of the layer. Defaults to 1.0.
"""
if isinstance(palette, str):
from .colormaps import get_palette
count = ee_object.size().getInfo()
palette = get_palette(palette, count)
styled_vector = vector_styling(ee_object, column, palette, **kwargs)
self.addLayer(
styled_vector.style(**{"styleProperty": "style"}),
{},
layer_name,
shown,
opacity,
)
def add_shp(
self,
in_shp,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
encoding="utf-8",
):
"""Adds a shapefile to the map.
Args:
in_shp (str): The input file path to the shapefile.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
encoding (str, optional): The encoding of the shapefile. Defaults to "utf-8".
Raises:
FileNotFoundError: The provided shapefile could not be found.
"""
in_shp = os.path.abspath(in_shp)
if not os.path.exists(in_shp):
raise FileNotFoundError("The provided shapefile could not be found.")
geojson = shp_to_geojson(in_shp)
self.add_geojson(
geojson,
layer_name,
style,
hover_style,
style_callback,
fill_colors,
info_mode,
encoding,
)
add_shapefile = add_shp
def add_geojson(
self,
in_geojson,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
encoding="utf-8",
):
"""Adds a GeoJSON file to the map.
Args:
in_geojson (str | dict): The file path or http URL to the input GeoJSON or a dictionary containing the geojson.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
encoding (str, optional): The encoding of the GeoJSON file. Defaults to "utf-8".
Raises:
FileNotFoundError: The provided GeoJSON file could not be found.
"""
import json
import random
import requests
import warnings
warnings.filterwarnings("ignore")
style_callback_only = False
if len(style) == 0 and style_callback is not None:
style_callback_only = True
try:
if isinstance(in_geojson, str):
if in_geojson.startswith("http"):
in_geojson = github_raw_url(in_geojson)
data = requests.get(in_geojson).json()
else:
in_geojson = os.path.abspath(in_geojson)
if not os.path.exists(in_geojson):
raise FileNotFoundError(
"The provided GeoJSON file could not be found."
)
with open(in_geojson, encoding=encoding) as f:
data = json.load(f)
elif isinstance(in_geojson, dict):
data = in_geojson
else:
raise TypeError("The input geojson must be a type of str or dict.")
except Exception as e:
raise Exception(e)
if not style:
style = {
# "stroke": True,
"color": "#000000",
"weight": 1,
"opacity": 1,
# "fill": True,
# "fillColor": "#ffffff",
"fillOpacity": 0.1,
# "dashArray": "9"
# "clickable": True,
}
elif "weight" not in style:
style["weight"] = 1
if not hover_style:
hover_style = {"weight": style["weight"] + 1, "fillOpacity": 0.5}
def random_color(feature):
return {
"color": "black",
"fillColor": random.choice(fill_colors),
}
toolbar_button = widgets.ToggleButton(
value=True,
tooltip="Toolbar",
icon="info",
layout=widgets.Layout(
width="28px", height="28px", padding="0px 0px 0px 4px"
),
)
close_button = widgets.ToggleButton(
value=False,
tooltip="Close the tool",
icon="times",
# button_style="primary",
layout=widgets.Layout(
height="28px", width="28px", padding="0px 0px 0px 4px"
),
)
html = widgets.HTML()
html.layout.margin = "0px 10px 0px 10px"
html.layout.max_height = "250px"
html.layout.max_width = "250px"
output_widget = widgets.VBox(
[widgets.HBox([toolbar_button, close_button]), html]
)
info_control = ipyleaflet.WidgetControl(
widget=output_widget, position="bottomright"
)
if info_mode in ["on_hover", "on_click"]:
self.add(info_control)
def toolbar_btn_click(change):
if change["new"]:
close_button.value = False
output_widget.children = [
widgets.VBox([widgets.HBox([toolbar_button, close_button]), html])
]
else:
output_widget.children = [widgets.HBox([toolbar_button, close_button])]
toolbar_button.observe(toolbar_btn_click, "value")
def close_btn_click(change):
if change["new"]:
toolbar_button.value = False
if info_control in self.controls:
self.remove_control(info_control)
output_widget.close()
close_button.observe(close_btn_click, "value")
def update_html(feature, **kwargs):
value = [
"<b>{}: </b>{}<br>".format(prop, feature["properties"][prop])
for prop in feature["properties"].keys()
][:-1]
value = """{}""".format("".join(value))
html.value = value
if style_callback is None:
style_callback = random_color
if style_callback_only:
geojson = ipyleaflet.GeoJSON(
data=data,
hover_style=hover_style,
style_callback=style_callback,
name=layer_name,
)
else:
geojson = ipyleaflet.GeoJSON(
data=data,
style=style,
hover_style=hover_style,
style_callback=style_callback,
name=layer_name,
)
if info_mode == "on_hover":
geojson.on_hover(update_html)
elif info_mode == "on_click":
geojson.on_click(update_html)
self.add(geojson)
self.geojson_layers.append(geojson)
if not hasattr(self, "json_layer_dict"):
self.json_layer_dict = {}
params = {
"data": geojson,
"style": style,
"hover_style": hover_style,
"style_callback": style_callback,
}
self.json_layer_dict[layer_name] = params
def add_kml(
self,
in_kml,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
):
"""Adds a GeoJSON file to the map.
Args:
in_kml (str): The input file path to the KML.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
Raises:
FileNotFoundError: The provided KML file could not be found.
"""
if isinstance(in_kml, str) and in_kml.startswith("http"):
in_kml = github_raw_url(in_kml)
in_kml = download_file(in_kml)
in_kml = os.path.abspath(in_kml)
if not os.path.exists(in_kml):
raise FileNotFoundError("The provided KML file could not be found.")
self.add_vector(
in_kml,
layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
fill_colors=fill_colors,
info_mode=info_mode,
)
def add_vector(
self,
filename,
layer_name="Untitled",
to_ee=False,
bbox=None,
mask=None,
rows=None,
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
encoding="utf-8",
**kwargs,
):
"""Adds any geopandas-supported vector dataset to the map.
Args:
filename (str): Either the absolute or relative path to the file or URL to be opened, or any object with a read() method (such as an open file or StringIO).
layer_name (str, optional): The layer name to use. Defaults to "Untitled".
to_ee (bool, optional): Whether to convert the GeoJSON to ee.FeatureCollection. Defaults to False.
bbox (tuple | GeoDataFrame or GeoSeries | shapely Geometry, optional): Filter features by given bounding box, GeoSeries, GeoDataFrame or a shapely geometry. CRS mis-matches are resolved if given a GeoSeries or GeoDataFrame. Cannot be used with mask. Defaults to None.
mask (dict | GeoDataFrame or GeoSeries | shapely Geometry, optional): Filter for features that intersect with the given dict-like geojson geometry, GeoSeries, GeoDataFrame or shapely geometry. CRS mis-matches are resolved if given a GeoSeries or GeoDataFrame. Cannot be used with bbox. Defaults to None.
rows (int or slice, optional): Load in specific rows by passing an integer (first n rows) or a slice() object.. Defaults to None.
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
encoding (str, optional): The encoding to use to read the file. Defaults to "utf-8".
"""
if not filename.startswith("http"):
filename = os.path.abspath(filename)
else:
filename = github_raw_url(filename)
if to_ee:
fc = vector_to_ee(
filename,
bbox=bbox,
mask=mask,
rows=rows,
geodesic=True,
**kwargs,
)
self.addLayer(fc, {}, layer_name)
else:
ext = os.path.splitext(filename)[1].lower()
if ext == ".shp":
self.add_shapefile(
filename,
layer_name,
style,
hover_style,
style_callback,
fill_colors,
info_mode,
encoding,
)
elif ext in [".json", ".geojson"]:
self.add_geojson(
filename,
layer_name,
style,
hover_style,
style_callback,
fill_colors,
info_mode,
encoding,
)
else:
geojson = vector_to_geojson(
filename,
bbox=bbox,
mask=mask,
rows=rows,
epsg="4326",
**kwargs,
)
self.add_geojson(
geojson,
layer_name,
style,
hover_style,
style_callback,
fill_colors,
info_mode,
encoding,
)
def add_osm(
self,
query,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
which_result=None,
by_osmid=False,
buffer_dist=None,
to_ee=False,
geodesic=True,
):
"""Adds OSM data to the map.
Args:
query (str | dict | list): Query string(s) or structured dict(s) to geocode.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
which_result (INT, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
by_osmid (bool, optional): If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.
buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.
to_ee (bool, optional): Whether to convert the csv to an ee.FeatureCollection.
geodesic (bool, optional): Whether line segments should be interpreted as spherical geodesics. If false, indicates that line segments should be interpreted as planar lines in the specified CRS. If absent, defaults to true if the CRS is geographic (including the default EPSG:4326), or to false if the CRS is projected.
"""
gdf = osm_to_gdf(
query, which_result=which_result, by_osmid=by_osmid, buffer_dist=buffer_dist
)
geojson = gdf.__geo_interface__
if to_ee:
fc = geojson_to_ee(geojson, geodesic=geodesic)
self.addLayer(fc, {}, layer_name)
self.zoomToObject(fc)
else:
self.add_geojson(
geojson,
layer_name=layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
fill_colors=fill_colors,
info_mode=info_mode,
)
bounds = gdf.bounds.iloc[0]
self.fit_bounds([[bounds[1], bounds[0]], [bounds[3], bounds[2]]])
def add_osm_from_geocode(
self,
query,
which_result=None,
by_osmid=False,
buffer_dist=None,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
):
"""Adds OSM data of place(s) by name or ID to the map.
Args:
query (str | dict | list): Query string(s) or structured dict(s) to geocode.
which_result (int, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
by_osmid (bool, optional): If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.
buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
"""
from .osm import osm_gdf_from_geocode
gdf = osm_gdf_from_geocode(
query, which_result=which_result, by_osmid=by_osmid, buffer_dist=buffer_dist
)
geojson = gdf.__geo_interface__
self.add_geojson(
geojson,
layer_name=layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
fill_colors=fill_colors,
info_mode=info_mode,
)
self.zoom_to_gdf(gdf)
def add_osm_from_address(
self,
address,
tags,
dist=1000,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
):
"""Adds OSM entities within some distance N, S, E, W of address to the map.
Args:
address (str): The address to geocode and use as the central point around which to get the geometries.
tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
dist (int, optional): Distance in meters. Defaults to 1000.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
"""
from .osm import osm_gdf_from_address
gdf = osm_gdf_from_address(address, tags, dist)
geojson = gdf.__geo_interface__
self.add_geojson(
geojson,
layer_name=layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
fill_colors=fill_colors,
info_mode=info_mode,
)
self.zoom_to_gdf(gdf)
def add_osm_from_place(
self,
query,
tags,
which_result=None,
buffer_dist=None,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
):
"""Adds OSM entities within boundaries of geocodable place(s) to the map.
Args:
query (str | dict | list): Query string(s) or structured dict(s) to geocode.
tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
which_result (int, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
"""
from .osm import osm_gdf_from_place
gdf = osm_gdf_from_place(query, tags, which_result, buffer_dist)
geojson = gdf.__geo_interface__
self.add_geojson(
geojson,
layer_name=layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
fill_colors=fill_colors,
info_mode=info_mode,
)
self.zoom_to_gdf(gdf)
def add_osm_from_point(
self,
center_point,
tags,
dist=1000,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
):
"""Adds OSM entities within some distance N, S, E, W of a point to the map.
Args:
center_point (tuple): The (lat, lng) center point around which to get the geometries.
tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
dist (int, optional): Distance in meters. Defaults to 1000.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
"""
from .osm import osm_gdf_from_point
gdf = osm_gdf_from_point(center_point, tags, dist)
geojson = gdf.__geo_interface__
self.add_geojson(
geojson,
layer_name=layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
fill_colors=fill_colors,
info_mode=info_mode,
)
self.zoom_to_gdf(gdf)
def add_osm_from_polygon(
self,
polygon,
tags,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
):
"""Adds OSM entities within boundaries of a (multi)polygon to the map.
Args:
polygon (shapely.geometry.Polygon | shapely.geometry.MultiPolygon): Geographic boundaries to fetch geometries within
tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
"""
from .osm import osm_gdf_from_polygon
gdf = osm_gdf_from_polygon(polygon, tags)
geojson = gdf.__geo_interface__
self.add_geojson(
geojson,
layer_name=layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
fill_colors=fill_colors,
info_mode=info_mode,
)
self.zoom_to_gdf(gdf)
def add_osm_from_bbox(
self,
north,
south,
east,
west,
tags,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
):
"""Adds OSM entities within a N, S, E, W bounding box to the map.
Args:
north (float): Northern latitude of bounding box.
south (float): Southern latitude of bounding box.
east (float): Eastern longitude of bounding box.
west (float): Western longitude of bounding box.
tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
"""
from .osm import osm_gdf_from_bbox
gdf = osm_gdf_from_bbox(north, south, east, west, tags)
geojson = gdf.__geo_interface__
self.add_geojson(
geojson,
layer_name=layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
fill_colors=fill_colors,
info_mode=info_mode,
)
self.zoom_to_gdf(gdf)
def add_osm_from_view(
self,
tags,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
):
"""Adds OSM entities within the current map view to the map.
Args:
tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
"""
from .osm import osm_gdf_from_bbox
bounds = self.bounds
if len(bounds) == 0:
bounds = (
(40.74824858675827, -73.98933637940563),
(40.75068694343106, -73.98364473187601),
)
north, south, east, west = (
bounds[1][0],
bounds[0][0],
bounds[1][1],
bounds[0][1],
)
gdf = osm_gdf_from_bbox(north, south, east, west, tags)
geojson = gdf.__geo_interface__
self.add_geojson(
geojson,
layer_name=layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
fill_colors=fill_colors,
info_mode=info_mode,
)
self.zoom_to_gdf(gdf)
def add_gdf(
self,
gdf,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
zoom_to_layer=True,
encoding="utf-8",
):
"""Adds a GeoDataFrame to the map.
Args:
gdf (GeoDataFrame): A GeoPandas GeoDataFrame.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
zoom_to_layer (bool, optional): Whether to zoom to the layer.
encoding (str, optional): The encoding of the GeoDataFrame. Defaults to "utf-8".
"""
data = gdf_to_geojson(gdf, epsg="4326")
self.add_geojson(
data,
layer_name,
style,
hover_style,
style_callback,
fill_colors,
info_mode,
encoding,
)
if zoom_to_layer:
import numpy as np
bounds = gdf.to_crs(epsg="4326").bounds
west = np.min(bounds["minx"])
south = np.min(bounds["miny"])
east = np.max(bounds["maxx"])
north = np.max(bounds["maxy"])
self.fit_bounds([[south, east], [north, west]])
def add_gdf_from_postgis(
self,
sql,
con,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
zoom_to_layer=True,
**kwargs,
):
"""Reads a PostGIS database and returns data as a GeoDataFrame to be added to the map.
Args:
sql (str): SQL query to execute in selecting entries from database, or name of the table to read from the database.
con (sqlalchemy.engine.Engine): Active connection to the database to query.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
zoom_to_layer (bool, optional): Whether to zoom to the layer.
"""
gdf = read_postgis(sql, con, **kwargs)
gdf = gdf.to_crs("epsg:4326")
self.add_gdf(
gdf,
layer_name,
style,
hover_style,
style_callback,
fill_colors,
info_mode,
zoom_to_layer,
)
def add_time_slider(
self,
ee_object,
vis_params={},
region=None,
layer_name="Time series",
labels=None,
time_interval=1,
position="bottomright",
slider_length="150px",
date_format="YYYY-MM-dd",
opacity=1.0,
**kwargs,
):
"""Adds a time slider to the map.
Args:
ee_object (ee.Image | ee.ImageCollection): The Image or ImageCollection to visualize.
vis_params (dict, optional): Visualization parameters to use for visualizing image. Defaults to {}.
region (ee.Geometry | ee.FeatureCollection): The region to visualize.
layer_name (str, optional): The layer name to be used. Defaults to "Time series".
labels (list, optional): The list of labels to be used for the time series. Defaults to None.
time_interval (int, optional): Time interval in seconds. Defaults to 1.
position (str, optional): Position to place the time slider, can be any of ['topleft', 'topright', 'bottomleft', 'bottomright']. Defaults to "bottomright".
slider_length (str, optional): Length of the time slider. Defaults to "150px".
date_format (str, optional): The date format to use. Defaults to 'YYYY-MM-dd'.
opacity (float, optional): The opacity of layers. Defaults to 1.0.
Raises:
TypeError: If the ee_object is not ee.Image | ee.ImageCollection.
"""
import threading
if isinstance(ee_object, ee.Image):
if region is not None:
if isinstance(region, ee.Geometry):
ee_object = ee_object.clip(region)
elif isinstance(region, ee.FeatureCollection):
ee_object = ee_object.clipToCollection(region)
if layer_name not in self.ee_raster_layer_names:
self.addLayer(ee_object, {}, layer_name, False, opacity)
band_names = ee_object.bandNames()
ee_object = ee.ImageCollection(
ee_object.bandNames().map(lambda b: ee_object.select([b]))
)
if labels is not None:
if len(labels) != int(ee_object.size().getInfo()):
raise ValueError(
"The length of labels must be equal to the number of bands in the image."
)
else:
labels = band_names.getInfo()
elif isinstance(ee_object, ee.ImageCollection):
if region is not None:
if isinstance(region, ee.Geometry):
ee_object = ee_object.map(lambda img: img.clip(region))
elif isinstance(region, ee.FeatureCollection):
ee_object = ee_object.map(lambda img: img.clipToCollection(region))
if labels is not None:
if len(labels) != int(ee_object.size().getInfo()):
raise ValueError(
"The length of labels must be equal to the number of images in the ImageCollection."
)
else:
labels = (
ee_object.aggregate_array("system:time_start")
.map(lambda d: ee.Date(d).format(date_format))
.getInfo()
)
else:
raise TypeError("The ee_object must be an ee.Image or ee.ImageCollection")
# if labels is not None:
# size = len(labels)
# else:
# size = ee_object.size().getInfo()
# labels = [str(i) for i in range(1, size + 1)]
first = ee.Image(ee_object.first())
if layer_name not in self.ee_raster_layer_names:
self.addLayer(ee_object.toBands(), {}, layer_name, False, opacity)
self.addLayer(first, vis_params, "Image X", True, opacity)
slider = widgets.IntSlider(
min=1,
max=len(labels),
readout=False,
continuous_update=False,
layout=widgets.Layout(width=slider_length),
)
label = widgets.Label(
value=labels[0], layout=widgets.Layout(padding="0px 5px 0px 5px")
)
play_btn = widgets.Button(
icon="play",
tooltip="Play the time slider",
button_style="primary",
layout=widgets.Layout(width="32px"),
)
pause_btn = widgets.Button(
icon="pause",
tooltip="Pause the time slider",
button_style="primary",
layout=widgets.Layout(width="32px"),
)
close_btn = widgets.Button(
icon="times",
tooltip="Close the time slider",
button_style="primary",
layout=widgets.Layout(width="32px"),
)
play_chk = widgets.Checkbox(value=False)
slider_widget = widgets.HBox([slider, label, play_btn, pause_btn, close_btn])
def play_click(b):
import time
play_chk.value = True
def work(slider):
while play_chk.value:
if slider.value < len(labels):
slider.value += 1
else:
slider.value = 1
time.sleep(time_interval)
thread = threading.Thread(target=work, args=(slider,))
thread.start()
def pause_click(b):
play_chk.value = False
play_btn.on_click(play_click)
pause_btn.on_click(pause_click)
def slider_changed(change):
self.default_style = {"cursor": "wait"}
index = slider.value - 1
label.value = labels[index]
image = ee.Image(ee_object.toList(ee_object.size()).get(index))
if layer_name not in self.ee_raster_layer_names:
self.addLayer(ee_object.toBands(), {}, layer_name, False, opacity)
self.addLayer(image, vis_params, "Image X", True, opacity)
self.default_style = {"cursor": "default"}
slider.observe(slider_changed, "value")
def close_click(b):
play_chk.value = False
self.toolbar_reset()
self.remove_ee_layer("Image X")
self.remove_ee_layer(layer_name)
if self.slider_ctrl is not None and self.slider_ctrl in self.controls:
self.remove_control(self.slider_ctrl)
slider_widget.close()
close_btn.on_click(close_click)
slider_ctrl = ipyleaflet.WidgetControl(widget=slider_widget, position=position)
self.add(slider_ctrl)
self.slider_ctrl = slider_ctrl
def add_xy_data(
self,
in_csv,
x="longitude",
y="latitude",
label=None,
layer_name="Marker cluster",
to_ee=False,
):
"""Adds points from a CSV file containing lat/lon information and display data on the map.
Args:
in_csv (str): The file path to the input CSV file.
x (str, optional): The name of the column containing longitude coordinates. Defaults to "longitude".
y (str, optional): The name of the column containing latitude coordinates. Defaults to "latitude".
label (str, optional): The name of the column containing label information to used for marker popup. Defaults to None.
layer_name (str, optional): The layer name to use. Defaults to "Marker cluster".
to_ee (bool, optional): Whether to convert the csv to an ee.FeatureCollection.
Raises:
FileNotFoundError: The specified input csv does not exist.
ValueError: The specified x column does not exist.
ValueError: The specified y column does not exist.
ValueError: The specified label column does not exist.
"""
import pandas as pd
if not in_csv.startswith("http") and (not os.path.exists(in_csv)):
raise FileNotFoundError("The specified input csv does not exist.")
df = pd.read_csv(in_csv)
col_names = df.columns.values.tolist()
if x not in col_names:
raise ValueError(f"x must be one of the following: {', '.join(col_names)}")
if y not in col_names:
raise ValueError(f"y must be one of the following: {', '.join(col_names)}")
if label is not None and (label not in col_names):
raise ValueError(
f"label must be one of the following: {', '.join(col_names)}"
)
self.default_style = {"cursor": "wait"}
if to_ee:
fc = csv_to_ee(in_csv, latitude=y, longitude=x)
self.addLayer(fc, {}, layer_name)
else:
points = list(zip(df[y], df[x]))
if label is not None:
labels = df[label]
markers = [
ipyleaflet.Marker(
location=point,
draggable=False,
popup=widgets.HTML(str(labels[index])),
)
for index, point in enumerate(points)
]
else:
markers = [
ipyleaflet.Marker(location=point, draggable=False)
for point in points
]
marker_cluster = ipyleaflet.MarkerCluster(markers=markers, name=layer_name)
self.add(marker_cluster)
self.default_style = {"cursor": "default"}
def add_points_from_xy(
self,
data,
x="longitude",
y="latitude",
popup=None,
layer_name="Marker Cluster",
color_column=None,
marker_colors=None,
icon_colors=["white"],
icon_names=["info"],
spin=False,
add_legend=True,
**kwargs,
):
"""Adds a marker cluster to the map.
Args:
data (str | pd.DataFrame): A csv or Pandas DataFrame containing x, y, z values.
x (str, optional): The column name for the x values. Defaults to "longitude".
y (str, optional): The column name for the y values. Defaults to "latitude".
popup (list, optional): A list of column names to be used as the popup. Defaults to None.
layer_name (str, optional): The name of the layer. Defaults to "Marker Cluster".
color_column (str, optional): The column name for the color values. Defaults to None.
marker_colors (list, optional): A list of colors to be used for the markers. Defaults to None.
icon_colors (list, optional): A list of colors to be used for the icons. Defaults to ['white'].
icon_names (list, optional): A list of names to be used for the icons. More icons can be found at https://fontawesome.com/v4/icons. Defaults to ['info'].
spin (bool, optional): If True, the icon will spin. Defaults to False.
add_legend (bool, optional): If True, a legend will be added to the map. Defaults to True.
"""
import pandas as pd
data = github_raw_url(data)
color_options = [
"red",
"blue",
"green",
"purple",
"orange",
"darkred",
"lightred",
"beige",
"darkblue",
"darkgreen",
"cadetblue",
"darkpurple",
"white",
"pink",
"lightblue",
"lightgreen",
"gray",
"black",
"lightgray",
]
if isinstance(data, pd.DataFrame):
df = data
elif not data.startswith("http") and (not os.path.exists(data)):
raise FileNotFoundError("The specified input csv does not exist.")
else:
df = pd.read_csv(data)
df = points_from_xy(df, x, y)
col_names = df.columns.values.tolist()
if color_column is not None and color_column not in col_names:
raise ValueError(
f"The color column {color_column} does not exist in the dataframe."
)
if color_column is not None:
items = list(set(df[color_column]))
else:
items = None
if color_column is not None and marker_colors is None:
if len(items) > len(color_options):
raise ValueError(
f"The number of unique values in the color column {color_column} is greater than the number of available colors."
)
else:
marker_colors = color_options[: len(items)]
elif color_column is not None and marker_colors is not None:
if len(items) != len(marker_colors):
raise ValueError(
f"The number of unique values in the color column {color_column} is not equal to the number of available colors."
)
if items is not None:
if len(icon_colors) == 1:
icon_colors = icon_colors * len(items)
elif len(items) != len(icon_colors):
raise ValueError(
f"The number of unique values in the color column {color_column} is not equal to the number of available colors."
)
if len(icon_names) == 1:
icon_names = icon_names * len(items)
elif len(items) != len(icon_names):
raise ValueError(
f"The number of unique values in the color column {color_column} is not equal to the number of available colors."
)
if "geometry" in col_names:
col_names.remove("geometry")
if popup is not None:
if isinstance(popup, str) and (popup not in col_names):
raise ValueError(
f"popup must be one of the following: {', '.join(col_names)}"
)
elif isinstance(popup, list) and (
not all(item in col_names for item in popup)
):
raise ValueError(
f"All popup items must be select from: {', '.join(col_names)}"
)
else:
popup = col_names
df["x"] = df.geometry.x
df["y"] = df.geometry.y
points = list(zip(df["y"], df["x"]))
if popup is not None:
if isinstance(popup, str):
labels = df[popup]
markers = []
for index, point in enumerate(points):
if items is not None:
marker_color = marker_colors[
items.index(df[color_column][index])
]
icon_name = icon_names[items.index(df[color_column][index])]
icon_color = icon_colors[items.index(df[color_column][index])]
marker_icon = ipyleaflet.AwesomeIcon(
name=icon_name,
marker_color=marker_color,
icon_color=icon_color,
spin=spin,
)
else:
marker_icon = None
marker = ipyleaflet.Marker(
location=point,
draggable=False,
popup=widgets.HTML(str(labels[index])),
icon=marker_icon,
)
markers.append(marker)
elif isinstance(popup, list):
labels = []
for i in range(len(points)):
label = ""
for item in popup:
label = (
label
+ "<b>"
+ str(item)
+ "</b>"
+ ": "
+ str(df[item][i])
+ "<br>"
)
labels.append(label)
df["popup"] = labels
markers = []
for index, point in enumerate(points):
if items is not None:
marker_color = marker_colors[
items.index(df[color_column][index])
]
icon_name = icon_names[items.index(df[color_column][index])]
icon_color = icon_colors[items.index(df[color_column][index])]
marker_icon = ipyleaflet.AwesomeIcon(
name=icon_name,
marker_color=marker_color,
icon_color=icon_color,
spin=spin,
)
else:
marker_icon = None
marker = ipyleaflet.Marker(
location=point,
draggable=False,
popup=widgets.HTML(labels[index]),
icon=marker_icon,
)
markers.append(marker)
else:
markers = []
for point in points:
if items is not None:
marker_color = marker_colors[items.index(df[color_column][index])]
icon_name = icon_names[items.index(df[color_column][index])]
icon_color = icon_colors[items.index(df[color_column][index])]
marker_icon = ipyleaflet.AwesomeIcon(
name=icon_name,
marker_color=marker_color,
icon_color=icon_color,
spin=spin,
)
else:
marker_icon = None
marker = ipyleaflet.Marker(
location=point, draggable=False, icon=marker_icon
)
markers.append(marker)
marker_cluster = ipyleaflet.MarkerCluster(markers=markers, name=layer_name)
self.add(marker_cluster)
if items is not None and add_legend:
marker_colors = [check_color(c) for c in marker_colors]
self.add_legend(
title=color_column.title(), colors=marker_colors, labels=items
)
self.default_style = {"cursor": "default"}
def add_circle_markers_from_xy(
self,
data,
x="longitude",
y="latitude",
radius=10,
popup=None,
**kwargs,
):
"""Adds a marker cluster to the map. For a list of options, see https://ipyleaflet.readthedocs.io/en/latest/api_reference/circle_marker.html
Args:
data (str | pd.DataFrame): A csv or Pandas DataFrame containing x, y, z values.
x (str, optional): The column name for the x values. Defaults to "longitude".
y (str, optional): The column name for the y values. Defaults to "latitude".
radius (int, optional): The radius of the circle. Defaults to 10.
popup (list, optional): A list of column names to be used as the popup. Defaults to None.
"""
import pandas as pd
data = github_raw_url(data)
if isinstance(data, pd.DataFrame):
df = data
elif not data.startswith("http") and (not os.path.exists(data)):
raise FileNotFoundError("The specified input csv does not exist.")
else:
df = pd.read_csv(data)
col_names = df.columns.values.tolist()
if popup is None:
popup = col_names
if not isinstance(popup, list):
popup = [popup]
if x not in col_names:
raise ValueError(f"x must be one of the following: {', '.join(col_names)}")
if y not in col_names:
raise ValueError(f"y must be one of the following: {', '.join(col_names)}")
for row in df.itertuples():
html = ""
for p in popup:
html = html + "<b>" + p + "</b>" + ": " + str(getattr(row, p)) + "<br>"
popup_html = widgets.HTML(html)
marker = ipyleaflet.CircleMarker(
location=[getattr(row, y), getattr(row, x)],
radius=radius,
popup=popup_html,
**kwargs,
)
super().add(marker)
def add_planet_by_month(
self, year=2016, month=1, name=None, api_key=None, token_name="PLANET_API_KEY"
):
"""Adds a Planet global mosaic by month to the map. To get a Planet API key, see https://developers.planet.com/quickstart/apis
Args:
year (int, optional): The year of Planet global mosaic, must be >=2016. Defaults to 2016.
month (int, optional): The month of Planet global mosaic, must be 1-12. Defaults to 1.
name (str, optional): The layer name to use. Defaults to None.
api_key (str, optional): The Planet API key. Defaults to None.
token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".
"""
layer = planet_tile_by_month(year, month, name, api_key, token_name)
self.add(layer)
def add_planet_by_quarter(
self, year=2016, quarter=1, name=None, api_key=None, token_name="PLANET_API_KEY"
):
"""Adds a Planet global mosaic by quarter to the map. To get a Planet API key, see https://developers.planet.com/quickstart/apis
Args:
year (int, optional): The year of Planet global mosaic, must be >=2016. Defaults to 2016.
quarter (int, optional): The quarter of Planet global mosaic, must be 1-12. Defaults to 1.
name (str, optional): The layer name to use. Defaults to None.
api_key (str, optional): The Planet API key. Defaults to None.
token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".
"""
layer = planet_tile_by_quarter(year, quarter, name, api_key, token_name)
self.add(layer)
def to_streamlit(self, width=None, height=600, scrolling=False, **kwargs):
"""Renders map figure in a Streamlit app.
Args:
width (int, optional): Width of the map. Defaults to None.
height (int, optional): Height of the map. Defaults to 600.
responsive (bool, optional): Whether to make the map responsive. Defaults to True.
scrolling (bool, optional): If True, show a scrollbar when the content is larger than the iframe. Otherwise, do not show a scrollbar. Defaults to False.
Returns:
streamlit.components: components.html object.
"""
try:
import streamlit.components.v1 as components
# if responsive:
# make_map_responsive = """
# <style>
# [title~="st.iframe"] { width: 100%}
# </style>
# """
# st.markdown(make_map_responsive, unsafe_allow_html=True)
return components.html(
self.to_html(), width=width, height=height, scrolling=scrolling
)
except Exception as e:
raise Exception(e)
def add_point_layer(
self, filename, popup=None, layer_name="Marker Cluster", **kwargs
):
"""Adds a point layer to the map with a popup attribute.
Args:
filename (str): str, http url, path object or file-like object. Either the absolute or relative path to the file or URL to be opened, or any object with a read() method (such as an open file or StringIO)
popup (str | list, optional): Column name(s) to be used for popup. Defaults to None.
layer_name (str, optional): A layer name to use. Defaults to "Marker Cluster".
Raises:
ValueError: If the specified column name does not exist.
ValueError: If the specified column names do not exist.
"""
import warnings
warnings.filterwarnings("ignore")
check_package(name="geopandas", URL="https://geopandas.org")
import geopandas as gpd
self.default_style = {"cursor": "wait"}
if not filename.startswith("http"):
filename = os.path.abspath(filename)
ext = os.path.splitext(filename)[1].lower()
if ext == ".kml":
gpd.io.file.fiona.drvsupport.supported_drivers["KML"] = "rw"
gdf = gpd.read_file(filename, driver="KML", **kwargs)
else:
gdf = gpd.read_file(filename, **kwargs)
df = gdf.to_crs(epsg="4326")
col_names = df.columns.values.tolist()
if popup is not None:
if isinstance(popup, str) and (popup not in col_names):
raise ValueError(
f"popup must be one of the following: {', '.join(col_names)}"
)
elif isinstance(popup, list) and (
not all(item in col_names for item in popup)
):
raise ValueError(
f"All popup items must be select from: {', '.join(col_names)}"
)
df["x"] = df.geometry.x
df["y"] = df.geometry.y
points = list(zip(df["y"], df["x"]))
if popup is not None:
if isinstance(popup, str):
labels = df[popup]
markers = [
ipyleaflet.Marker(
location=point,
draggable=False,
popup=widgets.HTML(str(labels[index])),
)
for index, point in enumerate(points)
]
elif isinstance(popup, list):
labels = []
for i in range(len(points)):
label = ""
for item in popup:
label = label + str(item) + ": " + str(df[item][i]) + "<br>"
labels.append(label)
df["popup"] = labels
markers = [
ipyleaflet.Marker(
location=point,
draggable=False,
popup=widgets.HTML(labels[index]),
)
for index, point in enumerate(points)
]
else:
markers = [
ipyleaflet.Marker(location=point, draggable=False) for point in points
]
marker_cluster = ipyleaflet.MarkerCluster(markers=markers, name=layer_name)
self.add(marker_cluster)
self.default_style = {"cursor": "default"}
def add_census_data(self, wms, layer, census_dict=None, **kwargs):
"""Adds a census data layer to the map.
Args:
wms (str): The wms to use. For example, "Current", "ACS 2021", "Census 2020". See the complete list at https://tigerweb.geo.census.gov/tigerwebmain/TIGERweb_wms.html
layer (str): The layer name to add to the map.
census_dict (dict, optional): A dictionary containing census data. Defaults to None. It can be obtained from the get_census_dict() function.
"""
try:
if census_dict is None:
census_dict = get_census_dict()
if wms not in census_dict.keys():
raise ValueError(
f"The provided WMS is invalid. It must be one of {census_dict.keys()}"
)
layers = census_dict[wms]["layers"]
if layer not in layers:
raise ValueError(
f"The layer name is not valid. It must be one of {layers}"
)
url = census_dict[wms]["url"]
if "name" not in kwargs:
kwargs["name"] = layer
if "attribution" not in kwargs:
kwargs["attribution"] = "U.S. Census Bureau"
if "format" not in kwargs:
kwargs["format"] = "image/png"
if "transparent" not in kwargs:
kwargs["transparent"] = True
self.add_wms_layer(url, layer, **kwargs)
except Exception as e:
raise Exception(e)
def add_xyz_service(self, provider, **kwargs):
"""Add a XYZ tile layer to the map.
Args:
provider (str): A tile layer name starts with xyz or qms. For example, xyz.OpenTopoMap,
Raises:
ValueError: The provider is not valid. It must start with xyz or qms.
"""
import xyzservices.providers as xyz
from xyzservices import TileProvider
if provider.startswith("xyz"):
name = provider[4:]
xyz_provider = xyz.flatten()[name]
url = xyz_provider.build_url()
attribution = xyz_provider.attribution
if attribution.strip() == "":
attribution = " "
self.add_tile_layer(url, name, attribution)
elif provider.startswith("qms"):
name = provider[4:]
qms_provider = TileProvider.from_qms(name)
url = qms_provider.build_url()
attribution = qms_provider.attribution
if attribution.strip() == "":
attribution = " "
self.add_tile_layer(url, name, attribution)
else:
raise ValueError(
f"The provider {provider} is not valid. It must start with xyz or qms."
)
def add_heatmap(
self,
data,
latitude="latitude",
longitude="longitude",
value="value",
name="Heat map",
radius=25,
**kwargs,
):
"""Adds a heat map to the map. Reference: https://ipyleaflet.readthedocs.io/en/latest/api_reference/heatmap.html
Args:
data (str | list | pd.DataFrame): File path or HTTP URL to the input file or a list of data points in the format of [[x1, y1, z1], [x2, y2, z2]]. For example, https://raw.githubusercontent.com/giswqs/leafmap/master/examples/data/world_cities.csv
latitude (str, optional): The column name of latitude. Defaults to "latitude".
longitude (str, optional): The column name of longitude. Defaults to "longitude".
value (str, optional): The column name of values. Defaults to "value".
name (str, optional): Layer name to use. Defaults to "Heat map".
radius (int, optional): Radius of each “point” of the heatmap. Defaults to 25.
Raises:
ValueError: If data is not a list.
"""
import pandas as pd
from ipyleaflet import Heatmap
try:
if isinstance(data, str):
df = pd.read_csv(data)
data = df[[latitude, longitude, value]].values.tolist()
elif isinstance(data, pd.DataFrame):
data = data[[latitude, longitude, value]].values.tolist()
elif isinstance(data, list):
pass
else:
raise ValueError("data must be a list, a DataFrame, or a file path.")
heatmap = Heatmap(locations=data, radius=radius, name=name, **kwargs)
self.add(heatmap)
except Exception as e:
raise Exception(e)
def add_labels(
self,
data,
column,
font_size="12pt",
font_color="black",
font_family="arial",
font_weight="normal",
x="longitude",
y="latitude",
draggable=True,
layer_name="Labels",
**kwargs,
):
"""Adds a label layer to the map. Reference: https://ipyleaflet.readthedocs.io/en/latest/api_reference/divicon.html
Args:
data (pd.DataFrame | ee.FeatureCollection): The input data to label.
column (str): The column name of the data to label.
font_size (str, optional): The font size of the labels. Defaults to "12pt".
font_color (str, optional): The font color of the labels. Defaults to "black".
font_family (str, optional): The font family of the labels. Defaults to "arial".
font_weight (str, optional): The font weight of the labels, can be normal, bold. Defaults to "normal".
x (str, optional): The column name of the longitude. Defaults to "longitude".
y (str, optional): The column name of the latitude. Defaults to "latitude".
draggable (bool, optional): Whether the labels are draggable. Defaults to True.
layer_name (str, optional): Layer name to use. Defaults to "Labels".
"""
import warnings
import pandas as pd
warnings.filterwarnings("ignore")
if isinstance(data, ee.FeatureCollection):
centroids = vector_centroids(data)
df = ee_to_df(centroids)
elif isinstance(data, pd.DataFrame):
df = data
elif isinstance(data, str):
ext = os.path.splitext(data)[1]
if ext == ".csv":
df = pd.read_csv(data)
elif ext in [".geojson", ".json", ".shp", ".gpkg"]:
try:
import geopandas as gpd
df = gpd.read_file(data)
df[x] = df.centroid.x
df[y] = df.centroid.y
except Exception as _:
print("geopandas is required to read geojson.")
return
else:
raise ValueError("data must be a DataFrame or an ee.FeatureCollection.")
if column not in df.columns:
raise ValueError(f"column must be one of {', '.join(df.columns)}.")
if x not in df.columns:
raise ValueError(f"column must be one of {', '.join(df.columns)}.")
if y not in df.columns:
raise ValueError(f"column must be one of {', '.join(df.columns)}.")
try:
size = int(font_size.replace("pt", ""))
except:
raise ValueError("font_size must be something like '10pt'")
labels = []
for index in df.index:
html = f'<div style="font-size: {font_size};color:{font_color};font-family:{font_family};font-weight: {font_weight}">{df[column][index]}</div>'
marker = ipyleaflet.Marker(
location=[df[y][index], df[x][index]],
icon=ipyleaflet.DivIcon(
icon_size=(1, 1),
icon_anchor=(size, size),
html=html,
**kwargs,
),
draggable=draggable,
)
labels.append(marker)
layer_group = ipyleaflet.LayerGroup(layers=labels, name=layer_name)
self.add(layer_group)
self.labels = layer_group
def remove_labels(self):
"""Removes all labels from the map."""
if hasattr(self, "labels"):
self.remove_layer(self.labels)
delattr(self, "labels")
def add_netcdf(
self,
filename,
variables=None,
palette=None,
vmin=None,
vmax=None,
nodata=None,
attribution=None,
layer_name="NetCDF layer",
shift_lon=True,
lat="lat",
lon="lon",
**kwargs,
):
"""Generate an ipyleaflet/folium TileLayer from a netCDF file.
If you are using this function in JupyterHub on a remote server (e.g., Binder, Microsoft Planetary Computer),
try adding to following two lines to the beginning of the notebook if the raster does not render properly.
import os
os.environ['LOCALTILESERVER_CLIENT_PREFIX'] = f'{os.environ['JUPYTERHUB_SERVICE_PREFIX'].lstrip('/')}/proxy/{{port}}'
Args:
filename (str): File path or HTTP URL to the netCDF file.
variables (int, optional): The variable/band names to extract data from the netCDF file. Defaults to None. If None, all variables will be extracted.
port (str, optional): The port to use for the server. Defaults to "default".
palette (str, optional): The name of the color palette from `palettable` to use when plotting a single band. See https://jiffyclub.github.io/palettable. Default is greyscale
vmin (float, optional): The minimum value to use when colormapping the palette when plotting a single band. Defaults to None.
vmax (float, optional): The maximum value to use when colormapping the palette when plotting a single band. Defaults to None.
nodata (float, optional): The value from the band to use to interpret as not valid data. Defaults to None.
attribution (str, optional): Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.
layer_name (str, optional): The layer name to use. Defaults to "netCDF layer".
shift_lon (bool, optional): Flag to shift longitude values from [0, 360] to the range [-180, 180]. Defaults to True.
lat (str, optional): Name of the latitude variable. Defaults to 'lat'.
lon (str, optional): Name of the longitude variable. Defaults to 'lon'.
"""
tif, vars = netcdf_to_tif(
filename, shift_lon=shift_lon, lat=lat, lon=lon, return_vars=True
)
if variables is None:
if len(vars) >= 3:
band_idx = [1, 2, 3]
else:
band_idx = [1]
else:
if not set(variables).issubset(set(vars)):
raise ValueError(f"The variables must be a subset of {vars}.")
else:
band_idx = [vars.index(v) + 1 for v in variables]
self.add_raster(
tif,
band=band_idx,
palette=palette,
vmin=vmin,
vmax=vmax,
nodata=nodata,
attribution=attribution,
layer_name=layer_name,
**kwargs,
)
def add_velocity(
self,
data,
zonal_speed,
meridional_speed,
latitude_dimension="lat",
longitude_dimension="lon",
level_dimension="lev",
level_index=0,
time_index=0,
velocity_scale=0.01,
max_velocity=20,
display_options={},
name="Velocity",
):
"""Add a velocity layer to the map.
Args:
data (str | xr.Dataset): The data to use for the velocity layer. It can be a file path to a NetCDF file or an xarray Dataset.
zonal_speed (str): Name of the zonal speed in the dataset. See https://en.wikipedia.org/wiki/Zonal_and_meridional_flow.
meridional_speed (str): Name of the meridional speed in the dataset. See https://en.wikipedia.org/wiki/Zonal_and_meridional_flow.
latitude_dimension (str, optional): Name of the latitude dimension in the dataset. Defaults to 'lat'.
longitude_dimension (str, optional): Name of the longitude dimension in the dataset. Defaults to 'lon'.
level_dimension (str, optional): Name of the level dimension in the dataset. Defaults to 'lev'.
level_index (int, optional): The index of the level dimension to display. Defaults to 0.
time_index (int, optional): The index of the time dimension to display. Defaults to 0.
velocity_scale (float, optional): The scale of the velocity. Defaults to 0.01.
max_velocity (int, optional): The maximum velocity to display. Defaults to 20.
display_options (dict, optional): The display options for the velocity layer. Defaults to {}. See https://bit.ly/3uf8t6w.
name (str, optional): Layer name to use . Defaults to 'Velocity'.
Raises:
ImportError: If the xarray package is not installed.
ValueError: If the data is not a NetCDF file or an xarray Dataset.
"""
try:
import xarray as xr
from ipyleaflet.velocity import Velocity
except ImportError:
raise ImportError(
"The xarray package is required to add a velocity layer. "
"Please install it with `pip install xarray`."
)
if isinstance(data, str):
if data.startswith("http"):
data = download_file(data)
ds = xr.open_dataset(data)
elif isinstance(data, xr.Dataset):
ds = data
else:
raise ValueError("The data must be a file path or xarray dataset.")
coords = list(ds.coords.keys())
# Rasterio does not handle time or levels. So we must drop them
if "time" in coords:
ds = ds.isel(time=time_index, drop=True)
params = {level_dimension: level_index}
if level_dimension in coords:
ds = ds.isel(drop=True, **params)
wind = Velocity(
data=ds,
zonal_speed=zonal_speed,
meridional_speed=meridional_speed,
latitude_dimension=latitude_dimension,
longitude_dimension=longitude_dimension,
velocity_scale=velocity_scale,
max_velocity=max_velocity,
display_options=display_options,
name=name,
)
self.add(wind)
def add_data(
self,
data,
column,
colors=None,
labels=None,
cmap=None,
scheme="Quantiles",
k=5,
add_legend=True,
legend_title=None,
legend_kwds=None,
classification_kwds=None,
layer_name="Untitled",
style=None,
hover_style=None,
style_callback=None,
info_mode="on_hover",
encoding="utf-8",
**kwargs,
):
"""Add vector data to the map with a variety of classification schemes.
Args:
data (str | pd.DataFrame | gpd.GeoDataFrame): The data to classify. It can be a filepath to a vector dataset, a pandas dataframe, or a geopandas geodataframe.
column (str): The column to classify.
cmap (str, optional): The name of a colormap recognized by matplotlib. Defaults to None.
colors (list, optional): A list of colors to use for the classification. Defaults to None.
labels (list, optional): A list of labels to use for the legend. Defaults to None.
scheme (str, optional): Name of a choropleth classification scheme (requires mapclassify).
Name of a choropleth classification scheme (requires mapclassify).
A mapclassify.MapClassifier object will be used
under the hood. Supported are all schemes provided by mapclassify (e.g.
'BoxPlot', 'EqualInterval', 'FisherJenks', 'FisherJenksSampled',
'HeadTailBreaks', 'JenksCaspall', 'JenksCaspallForced',
'JenksCaspallSampled', 'MaxP', 'MaximumBreaks',
'NaturalBreaks', 'Quantiles', 'Percentiles', 'StdMean',
'UserDefined'). Arguments can be passed in classification_kwds.
k (int, optional): Number of classes (ignored if scheme is None or if column is categorical). Default to 5.
legend_kwds (dict, optional): Keyword arguments to pass to :func:`matplotlib.pyplot.legend` or `matplotlib.pyplot.colorbar`. Defaults to None.
Keyword arguments to pass to :func:`matplotlib.pyplot.legend` or
Additional accepted keywords when `scheme` is specified:
fmt : string
A formatting specification for the bin edges of the classes in the
legend. For example, to have no decimals: ``{"fmt": "{:.0f}"}``.
labels : list-like
A list of legend labels to override the auto-generated labblels.
Needs to have the same number of elements as the number of
classes (`k`).
interval : boolean (default False)
An option to control brackets from mapclassify legend.
If True, open/closed interval brackets are shown in the legend.
classification_kwds (dict, optional): Keyword arguments to pass to mapclassify. Defaults to None.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to None.
style is a dictionary of the following form:
style = {
"stroke": False,
"color": "#ff0000",
"weight": 1,
"opacity": 1,
"fill": True,
"fillColor": "#ffffff",
"fillOpacity": 1.0,
"dashArray": "9"
"clickable": True,
}
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
hover_style is a dictionary of the following form:
hover_style = {"weight": style["weight"] + 1, "fillOpacity": 0.5}
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
style_callback is a function that takes the feature as argument and should return a dictionary of the following form:
style_callback = lambda feat: {"fillColor": feat["properties"]["color"]}
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
encoding (str, optional): The encoding of the GeoJSON file. Defaults to "utf-8".
"""
gdf, legend_dict = classify(
data=data,
column=column,
cmap=cmap,
colors=colors,
labels=labels,
scheme=scheme,
k=k,
legend_kwds=legend_kwds,
classification_kwds=classification_kwds,
)
if legend_title is None:
legend_title = column
if style is None:
style = {
# "stroke": False,
# "color": "#ff0000",
"weight": 1,
"opacity": 1,
# "fill": True,
# "fillColor": "#ffffff",
"fillOpacity": 1.0,
# "dashArray": "9"
# "clickable": True,
}
if colors is not None:
style["color"] = "#000000"
if hover_style is None:
hover_style = {"weight": style["weight"] + 1, "fillOpacity": 0.5}
if style_callback is None:
style_callback = lambda feat: {"fillColor": feat["properties"]["color"]}
self.add_gdf(
gdf,
layer_name=layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
info_mode=info_mode,
encoding=encoding,
**kwargs,
)
if add_legend:
self.add_legend(title=legend_title, legend_dict=legend_dict)
def user_roi_coords(self, decimals=4):
"""Return the bounding box of the ROI as a list of coordinates.
Args:
decimals (int, optional): Number of decimals to round the coordinates to. Defaults to 4.
"""
return bbox_coords(self.user_roi, decimals=decimals)
def add_widget(
self,
content,
position="bottomright",
add_header=True,
opened=True,
show_close_button=True,
widget_icon="gear",
close_button_icon="times",
widget_args={},
close_button_args={},
display_widget=None,
**kwargs,
):
"""Add a widget (e.g., text, HTML, figure) to the map.
Args:
content (str | ipywidgets.Widget | object): The widget to add.
position (str, optional): The position of the widget. Defaults to "bottomright".
add_header (bool, optional): Whether to add a header with close buttons to the widget. Defaults to True.
opened (bool, optional): Whether to open the toolbar. Defaults to True.
show_close_button (bool, optional): Whether to show the close button. Defaults to True.
widget_icon (str, optional): The icon name for the toolbar button. Defaults to 'gear'.
close_button_icon (str, optional): The icon name for the close button. Defaults to "times".
widget_args (dict, optional): Additional arguments to pass to the toolbar button. Defaults to {}.
close_button_args (dict, optional): Additional arguments to pass to the close button. Defaults to {}.
display_widget (ipywidgets.Widget, optional): The widget to be displayed when the toolbar is clicked.
**kwargs: Additional arguments to pass to the HTML or Output widgets
"""
allowed_positions = ["topleft", "topright", "bottomleft", "bottomright"]
if position not in allowed_positions:
raise Exception(f"position must be one of {allowed_positions}")
if "layout" not in kwargs:
kwargs["layout"] = widgets.Layout(padding="0px 4px 0px 4px")
try:
if add_header:
if isinstance(content, str):
widget = widgets.HTML(value=content, **kwargs)
else:
widget = content
widget_template(
widget,
opened,
show_close_button,
widget_icon,
close_button_icon,
widget_args,
close_button_args,
display_widget,
self,
position,
)
else:
if isinstance(content, str):
widget = widgets.HTML(value=content, **kwargs)
else:
widget = widgets.Output(**kwargs)
with widget:
display(content)
control = ipyleaflet.WidgetControl(widget=widget, position=position)
self.add(control)
except Exception as e:
raise Exception(f"Error adding widget: {e}")
def add_image(self, image, position="bottomright", **kwargs):
"""Add an image to the map.
Args:
image (str | ipywidgets.Image): The image to add.
position (str, optional): The position of the image, can be one of "topleft",
"topright", "bottomleft", "bottomright". Defaults to "bottomright".
"""
if isinstance(image, str):
if image.startswith("http"):
image = widgets.Image(value=requests.get(image).content, **kwargs)
elif os.path.exists(image):
with open(image, "rb") as f:
image = widgets.Image(value=f.read(), **kwargs)
elif isinstance(image, widgets.Image):
pass
else:
raise Exception("Invalid image")
self.add_widget(image, position=position)
def add_html(self, html, position="bottomright", **kwargs):
"""Add HTML to the map.
Args:
html (str): The HTML to add.
position (str, optional): The position of the HTML, can be one of "topleft",
"topright", "bottomleft", "bottomright". Defaults to "bottomright".
"""
self.add_widget(html, position=position, **kwargs)
def add_text(
self,
text,
fontsize=20,
fontcolor="black",
bold=False,
padding="5px",
background=True,
bg_color="white",
border_radius="5px",
position="bottomright",
**kwargs,
):
"""Add text to the map.
Args:
text (str): The text to add.
fontsize (int, optional): The font size. Defaults to 20.
fontcolor (str, optional): The font color. Defaults to "black".
bold (bool, optional): Whether to use bold font. Defaults to False.
padding (str, optional): The padding. Defaults to "5px".
background (bool, optional): Whether to use background. Defaults to True.
bg_color (str, optional): The background color. Defaults to "white".
border_radius (str, optional): The border radius. Defaults to "5px".
position (str, optional): The position of the widget. Defaults to "bottomright".
"""
if background:
text = f"""<div style="font-size: {fontsize}px; color: {fontcolor}; font-weight: {'bold' if bold else 'normal'};
padding: {padding}; background-color: {bg_color};
border-radius: {border_radius};">{text}</div>"""
else:
text = f"""<div style="font-size: {fontsize}px; color: {fontcolor}; font-weight: {'bold' if bold else 'normal'};
padding: {padding};">{text}</div>"""
self.add_html(text, position=position, **kwargs)
def to_gradio(self, width="100%", height="500px", **kwargs):
"""Converts the map to an HTML string that can be used in Gradio. Removes unsupported elements, such as
attribution and any code blocks containing functions. See https://github.com/gradio-app/gradio/issues/3190
Args:
width (str, optional): The width of the map. Defaults to '100%'.
height (str, optional): The height of the map. Defaults to '500px'.
Returns:
str: The HTML string to use in Gradio.
"""
print(
"The ipyleaflet plotting backend does not support this function. Please use the folium backend instead."
)
def add_search_control(
self,
marker=None,
url=None,
zoom=5,
property_name="display_name",
position="topleft",
):
"""Add a search control to the map.
Args:
marker (ipyleaflet.Marker, optional): The marker to use. Defaults to None.
url (str, optional): The URL to use for the search. Defaults to None.
zoom (int, optional): The zoom level to use. Defaults to 5.
property_name (str, optional): The property name to use. Defaults to "display_name".
position (str, optional): The position of the widget. Defaults to "topleft".
"""
if marker is None:
marker = ipyleaflet.Marker(
icon=ipyleaflet.AwesomeIcon(
name="check", marker_color="green", icon_color="darkgreen"
)
)
if url is None:
url = "https://nominatim.openstreetmap.org/search?format=json&q={s}"
search = ipyleaflet.SearchControl(
position=position,
url=url,
zoom=zoom,
property_name=property_name,
marker=marker,
)
self.add(search)
__init__(self, **kwargs)
special
¶
Initialize a map object. The following additional parameters can be passed in addition to the ipyleaflet.Map parameters:
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ee_initialize |
bool |
Whether or not to initialize ee. Defaults to True. |
required |
center |
list |
Center of the map (lat, lon). Defaults to [20, 0]. |
required |
zoom |
int |
Zoom level of the map. Defaults to 2. |
required |
height |
str |
Height of the map. Defaults to "600px". |
required |
width |
str |
Width of the map. Defaults to "100%". |
required |
basemap |
str |
Name of the basemap to add to the map. Defaults to "ROADMAP". Other options include "ROADMAP", "SATELLITE", "TERRAIN". |
required |
add_google_map |
bool |
Whether to add Google Maps to the map. Defaults to True. |
required |
sandbox_path |
str |
The path to a sandbox folder for voila web app. Defaults to None. |
required |
lite_mode |
bool |
Whether to enable lite mode, which only displays zoom control on the map. Defaults to False. |
required |
data_ctrl |
bool |
Whether to add the data control to the map. Defaults to True. |
required |
zoom_ctrl |
bool |
Whether to add the zoom control to the map. Defaults to True. |
required |
fullscreen_ctrl |
bool |
Whether to add the fullscreen control to the map. Defaults to True. |
required |
search_ctrl |
bool |
Whether to add the search control to the map. Defaults to True. |
required |
draw_ctrl |
bool |
Whether to add the draw control to the map. Defaults to True. |
required |
scale_ctrl |
bool |
Whether to add the scale control to the map. Defaults to True. |
required |
measure_ctrl |
bool |
Whether to add the measure control to the map. Defaults to True. |
required |
toolbar_ctrl |
bool |
Whether to add the toolbar control to the map. Defaults to True. |
required |
layer_ctrl |
bool |
Whether to add the layer control to the map. Defaults to False. |
required |
attribution_ctrl |
bool |
Whether to add the attribution control to the map. Defaults to True. |
required |
**kwargs |
Additional keyword arguments for ipyleaflet.Map. |
{} |
Source code in geemap/geemap.py
def __init__(self, **kwargs):
"""Initialize a map object. The following additional parameters can be passed in addition to the ipyleaflet.Map parameters:
Args:
ee_initialize (bool, optional): Whether or not to initialize ee. Defaults to True.
center (list, optional): Center of the map (lat, lon). Defaults to [20, 0].
zoom (int, optional): Zoom level of the map. Defaults to 2.
height (str, optional): Height of the map. Defaults to "600px".
width (str, optional): Width of the map. Defaults to "100%".
basemap (str, optional): Name of the basemap to add to the map. Defaults to "ROADMAP". Other options include "ROADMAP", "SATELLITE", "TERRAIN".
add_google_map (bool, optional): Whether to add Google Maps to the map. Defaults to True.
sandbox_path (str, optional): The path to a sandbox folder for voila web app. Defaults to None.
lite_mode (bool, optional): Whether to enable lite mode, which only displays zoom control on the map. Defaults to False.
data_ctrl (bool, optional): Whether to add the data control to the map. Defaults to True.
zoom_ctrl (bool, optional): Whether to add the zoom control to the map. Defaults to True.
fullscreen_ctrl (bool, optional): Whether to add the fullscreen control to the map. Defaults to True.
search_ctrl (bool, optional): Whether to add the search control to the map. Defaults to True.
draw_ctrl (bool, optional): Whether to add the draw control to the map. Defaults to True.
scale_ctrl (bool, optional): Whether to add the scale control to the map. Defaults to True.
measure_ctrl (bool, optional): Whether to add the measure control to the map. Defaults to True.
toolbar_ctrl (bool, optional): Whether to add the toolbar control to the map. Defaults to True.
layer_ctrl (bool, optional): Whether to add the layer control to the map. Defaults to False.
attribution_ctrl (bool, optional): Whether to add the attribution control to the map. Defaults to True.
**kwargs: Additional keyword arguments for ipyleaflet.Map.
"""
warnings.filterwarnings("ignore")
# Authenticates Earth Engine and initializes an Earth Engine session
if "ee_initialize" not in kwargs:
kwargs["ee_initialize"] = True
if kwargs["ee_initialize"]:
ee_initialize()
# Default map center center (lat, lon) and zoom level
center = [20, 0]
zoom = 2
# Set map width and height
if "height" not in kwargs:
kwargs["height"] = "600px"
elif isinstance(kwargs["height"], int):
kwargs["height"] = str(kwargs["height"]) + "px"
if "width" in kwargs and isinstance(kwargs["width"], int):
kwargs["width"] = str(kwargs["width"]) + "px"
# Set map center and zoom level
if "center" not in kwargs:
kwargs["center"] = center
if "zoom" not in kwargs:
kwargs["zoom"] = zoom
if "max_zoom" not in kwargs:
kwargs["max_zoom"] = 24
# Enable scroll wheel zoom by default
if "scroll_wheel_zoom" not in kwargs:
kwargs["scroll_wheel_zoom"] = True
# Use any basemap available through the basemap module, such as 'ROADMAP', 'OpenTopoMap'
if "basemap" in kwargs:
kwargs["basemap"] = check_basemap(kwargs["basemap"])
if kwargs["basemap"] in basemaps.keys():
kwargs["basemap"] = get_basemap(kwargs["basemap"])
kwargs["add_google_map"] = False
else:
kwargs.pop("basemap")
# Inherits the ipyleaflet Map class
super().__init__(**kwargs)
self.baseclass = "ipyleaflet"
self.layout.height = kwargs["height"]
if "width" in kwargs:
self.layout.width = kwargs["width"]
# sandbox path for Voila app to restrict access to system directories.
if "sandbox_path" not in kwargs:
self.sandbox_path = None
else:
if os.path.exists(os.path.abspath(kwargs["sandbox_path"])):
self.sandbox_path = kwargs["sandbox_path"]
else:
print("The sandbox path is invalid.")
self.sandbox_path = None
# Add Google Maps as the default basemap
if kwargs.get("add_google_map", True):
self.add("Google Maps")
# Remove all default controls
self.clear_controls()
if kwargs.get("lite_mode"): # Lite mode with only the zoom control
self.add_controls("zoom_ctrl", position="topleft")
else: # full mode with all controls
topleft_controls = [
"data_ctrl",
"zoom_ctrl",
"fullscreen_ctrl",
"draw_ctrl",
]
bottomleft_controls = [
"scale_ctrl",
"measure_ctrl",
]
topright_controls = [
"toolbar_ctrl",
]
bottomright_controls = ["attribution_ctrl"]
for control in topleft_controls:
if kwargs.get(control, True):
self.add_controls(control, position="topleft")
for control in bottomleft_controls:
if kwargs.get(control, True):
self.add_controls(control, position="bottomleft")
for control in topright_controls:
if kwargs.get(control, True):
self.add_controls(control, position="topright")
for control in bottomright_controls:
if kwargs.get(control, True):
self.add_controls(control, position="bottomright")
# Map attributes for drawing features
self.draw_features = []
self.draw_last_feature = None
self.draw_layer = None
self.user_roi = None
self.user_rois = None
# Map attributes for layers
self.geojson_layers = []
self.ee_layers = []
self.ee_layer_names = []
self.ee_raster_layers = []
self.ee_raster_layer_names = []
self.ee_vector_layers = []
self.ee_vector_layer_names = []
self.ee_layer_dict = {}
# ipyleaflet built-in layer control
self.layer_control = None
# Default reducer to use
if kwargs["ee_initialize"]:
self.roi_reducer = ee.Reducer.mean()
self.roi_reducer_scale = None
add(self, object)
¶
Adds a layer or control to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
object |
object |
The layer or control to add to the map. |
required |
Source code in geemap/geemap.py
def add(self, object):
"""Adds a layer or control to the map.
Args:
object (object): The layer or control to add to the map.
"""
if isinstance(object, str):
object = check_basemap(object)
if object in basemaps.keys():
object = get_basemap(object)
super().add(object)
if hasattr(self, "layer_manager_widget"):
self.update_layer_manager()
addLayer(self, ee_object, vis_params={}, name=None, shown=True, opacity=1.0)
¶
Adds a given EE object to the map as a layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ee_object |
Collection|Feature|Image|MapId |
The object to add to the map. |
required |
vis_params |
dict |
The visualization parameters. Defaults to {}. |
{} |
name |
str |
The name of the layer. Defaults to 'Layer N'. |
None |
shown |
bool |
A flag indicating whether the layer should be on by default. Defaults to True. |
True |
opacity |
float |
The layer's opacity represented as a number between 0 and 1. Defaults to 1. |
1.0 |
Source code in geemap/geemap.py
def add_ee_layer(
self, ee_object, vis_params={}, name=None, shown=True, opacity=1.0
):
"""Adds a given EE object to the map as a layer.
Args:
ee_object (Collection|Feature|Image|MapId): The object to add to the map.
vis_params (dict, optional): The visualization parameters. Defaults to {}.
name (str, optional): The name of the layer. Defaults to 'Layer N'.
shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
opacity (float, optional): The layer's opacity represented as a number between 0 and 1. Defaults to 1.
"""
if name is None:
layer_count = len(self.layers)
name = "Layer " + str(layer_count + 1)
tile_layer = EELeafletTileLayer(ee_object, vis_params, name, shown, opacity)
layer = self.find_layer(name=name)
if layer is not None:
existing_object = self.ee_layer_dict[name]["ee_object"]
if isinstance(existing_object, (ee.Image, ee.ImageCollection)):
self.ee_raster_layers.remove(existing_object)
self.ee_raster_layer_names.remove(name)
if (
hasattr(self, "_plot_dropdown_widget")
and self._plot_dropdown_widget is not None
):
self._plot_dropdown_widget.options = list(
self.ee_raster_layer_names
)
elif isinstance(ee_object, (ee.Geometry, ee.Feature, ee.FeatureCollection)):
self.ee_vector_layers.remove(existing_object)
self.ee_vector_layer_names.remove(name)
self.ee_layers.remove(existing_object)
self.ee_layer_names.remove(name)
self.remove_layer(layer)
self.ee_layers.append(ee_object)
if name not in self.ee_layer_names:
self.ee_layer_names.append(name)
self.ee_layer_dict[name] = {
"ee_object": ee_object,
"ee_layer": tile_layer,
"vis_params": vis_params,
}
self.add(tile_layer)
if isinstance(ee_object, (ee.Image, ee.ImageCollection)):
self.ee_raster_layers.append(ee_object)
self.ee_raster_layer_names.append(name)
if (
hasattr(self, "_plot_dropdown_widget")
and self._plot_dropdown_widget is not None
):
self._plot_dropdown_widget.options = list(self.ee_raster_layer_names)
elif isinstance(ee_object, (ee.Geometry, ee.Feature, ee.FeatureCollection)):
self.ee_vector_layers.append(ee_object)
self.ee_vector_layer_names.append(name)
arc_add_layer(tile_layer.url_format, name, shown, opacity)
addLayerControl(self, position='topright')
¶
Adds a layer control to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
position |
str |
description. Defaults to "topright". |
'topright' |
Source code in geemap/geemap.py
def add_layer_control(self, position="topright"):
"""Adds a layer control to the map.
Args:
position (str, optional): _description_. Defaults to "topright".
"""
if self.layer_control is None:
layer_control = ipyleaflet.LayersControl(position=position)
self.add(layer_control)
add_basemap(self, basemap='HYBRID', show=True, **kwargs)
¶
Adds a basemap to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
basemap |
str |
Can be one of string from basemaps. Defaults to 'HYBRID'. |
'HYBRID' |
visible |
bool |
Whether the basemap is visible or not. Defaults to True. |
required |
**kwargs |
Keyword arguments for the TileLayer. |
{} |
Source code in geemap/geemap.py
def add_basemap(self, basemap="HYBRID", show=True, **kwargs):
"""Adds a basemap to the map.
Args:
basemap (str, optional): Can be one of string from basemaps. Defaults to 'HYBRID'.
visible (bool, optional): Whether the basemap is visible or not. Defaults to True.
**kwargs: Keyword arguments for the TileLayer.
"""
import xyzservices
try:
layer_names = self.get_layer_names()
map_dict = {
"ROADMAP": "Google Maps",
"SATELLITE": "Google Satellite",
"TERRAIN": "Google Terrain",
"HYBRID": "Google Hybrid",
}
if isinstance(basemap, str):
if basemap.upper() in map_dict:
basemap = map_dict[basemap.upper()]
if isinstance(basemap, xyzservices.TileProvider):
name = basemap.name
url = basemap.build_url()
attribution = basemap.attribution
if "max_zoom" in basemap.keys():
max_zoom = basemap["max_zoom"]
else:
max_zoom = 22
layer = ipyleaflet.TileLayer(
url=url,
name=name,
max_zoom=max_zoom,
attribution=attribution,
visible=show,
**kwargs,
)
self.add(layer)
arc_add_layer(url, name)
elif basemap in basemaps and basemaps[basemap].name not in layer_names:
self.add(basemap)
self.layers[-1].visible = show
arc_add_layer(basemaps[basemap].url, basemap)
elif basemap in basemaps and basemaps[basemap].name in layer_names:
print(f"{basemap} has been already added before.")
else:
print(
"Basemap can only be one of the following:\n {}".format(
"\n ".join(basemaps.keys())
)
)
except Exception as e:
raise ValueError(
"Basemap can only be one of the following:\n {}".format(
"\n ".join(basemaps.keys())
)
)
add_census_data(self, wms, layer, census_dict=None, **kwargs)
¶
Adds a census data layer to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
wms |
str |
The wms to use. For example, "Current", "ACS 2021", "Census 2020". See the complete list at https://tigerweb.geo.census.gov/tigerwebmain/TIGERweb_wms.html |
required |
layer |
str |
The layer name to add to the map. |
required |
census_dict |
dict |
A dictionary containing census data. Defaults to None. It can be obtained from the get_census_dict() function. |
None |
Source code in geemap/geemap.py
def add_census_data(self, wms, layer, census_dict=None, **kwargs):
"""Adds a census data layer to the map.
Args:
wms (str): The wms to use. For example, "Current", "ACS 2021", "Census 2020". See the complete list at https://tigerweb.geo.census.gov/tigerwebmain/TIGERweb_wms.html
layer (str): The layer name to add to the map.
census_dict (dict, optional): A dictionary containing census data. Defaults to None. It can be obtained from the get_census_dict() function.
"""
try:
if census_dict is None:
census_dict = get_census_dict()
if wms not in census_dict.keys():
raise ValueError(
f"The provided WMS is invalid. It must be one of {census_dict.keys()}"
)
layers = census_dict[wms]["layers"]
if layer not in layers:
raise ValueError(
f"The layer name is not valid. It must be one of {layers}"
)
url = census_dict[wms]["url"]
if "name" not in kwargs:
kwargs["name"] = layer
if "attribution" not in kwargs:
kwargs["attribution"] = "U.S. Census Bureau"
if "format" not in kwargs:
kwargs["format"] = "image/png"
if "transparent" not in kwargs:
kwargs["transparent"] = True
self.add_wms_layer(url, layer, **kwargs)
except Exception as e:
raise Exception(e)
add_circle_markers_from_xy(self, data, x='longitude', y='latitude', radius=10, popup=None, **kwargs)
¶
Adds a marker cluster to the map. For a list of options, see https://ipyleaflet.readthedocs.io/en/latest/api_reference/circle_marker.html
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
str | pd.DataFrame |
A csv or Pandas DataFrame containing x, y, z values. |
required |
x |
str |
The column name for the x values. Defaults to "longitude". |
'longitude' |
y |
str |
The column name for the y values. Defaults to "latitude". |
'latitude' |
radius |
int |
The radius of the circle. Defaults to 10. |
10 |
popup |
list |
A list of column names to be used as the popup. Defaults to None. |
None |
Source code in geemap/geemap.py
def add_circle_markers_from_xy(
self,
data,
x="longitude",
y="latitude",
radius=10,
popup=None,
**kwargs,
):
"""Adds a marker cluster to the map. For a list of options, see https://ipyleaflet.readthedocs.io/en/latest/api_reference/circle_marker.html
Args:
data (str | pd.DataFrame): A csv or Pandas DataFrame containing x, y, z values.
x (str, optional): The column name for the x values. Defaults to "longitude".
y (str, optional): The column name for the y values. Defaults to "latitude".
radius (int, optional): The radius of the circle. Defaults to 10.
popup (list, optional): A list of column names to be used as the popup. Defaults to None.
"""
import pandas as pd
data = github_raw_url(data)
if isinstance(data, pd.DataFrame):
df = data
elif not data.startswith("http") and (not os.path.exists(data)):
raise FileNotFoundError("The specified input csv does not exist.")
else:
df = pd.read_csv(data)
col_names = df.columns.values.tolist()
if popup is None:
popup = col_names
if not isinstance(popup, list):
popup = [popup]
if x not in col_names:
raise ValueError(f"x must be one of the following: {', '.join(col_names)}")
if y not in col_names:
raise ValueError(f"y must be one of the following: {', '.join(col_names)}")
for row in df.itertuples():
html = ""
for p in popup:
html = html + "<b>" + p + "</b>" + ": " + str(getattr(row, p)) + "<br>"
popup_html = widgets.HTML(html)
marker = ipyleaflet.CircleMarker(
location=[getattr(row, y), getattr(row, x)],
radius=radius,
popup=popup_html,
**kwargs,
)
super().add(marker)
add_cog_layer(self, url, name='Untitled', attribution='', opacity=1.0, shown=True, bands=None, titiler_endpoint=None, **kwargs)
¶
Adds a COG TileLayer to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url |
str |
The URL of the COG tile layer. |
required |
name |
str |
The layer name to use for the layer. Defaults to 'Untitled'. |
'Untitled' |
attribution |
str |
The attribution to use. Defaults to ''. |
'' |
opacity |
float |
The opacity of the layer. Defaults to 1. |
1.0 |
shown |
bool |
A flag indicating whether the layer should be on by default. Defaults to True. |
True |
bands |
list |
A list of bands to use for the layer. Defaults to None. |
None |
titiler_endpoint |
str |
Titiler endpoint. Defaults to "https://titiler.xyz". |
None |
**kwargs |
Arbitrary keyword arguments, including bidx, expression, nodata, unscale, resampling, rescale, color_formula, colormap, colormap_name, return_mask. See https://developmentseed.org/titiler/endpoints/cog/ and https://cogeotiff.github.io/rio-tiler/colormap/. To select a certain bands, use bidx=[1, 2, 3] |
{} |
Source code in geemap/geemap.py
def add_cog_layer(
self,
url,
name="Untitled",
attribution="",
opacity=1.0,
shown=True,
bands=None,
titiler_endpoint=None,
**kwargs,
):
"""Adds a COG TileLayer to the map.
Args:
url (str): The URL of the COG tile layer.
name (str, optional): The layer name to use for the layer. Defaults to 'Untitled'.
attribution (str, optional): The attribution to use. Defaults to ''.
opacity (float, optional): The opacity of the layer. Defaults to 1.
shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
bands (list, optional): A list of bands to use for the layer. Defaults to None.
titiler_endpoint (str, optional): Titiler endpoint. Defaults to "https://titiler.xyz".
**kwargs: Arbitrary keyword arguments, including bidx, expression, nodata, unscale, resampling, rescale, color_formula, colormap, colormap_name, return_mask. See https://developmentseed.org/titiler/endpoints/cog/ and https://cogeotiff.github.io/rio-tiler/colormap/. To select a certain bands, use bidx=[1, 2, 3]
"""
tile_url = cog_tile(url, bands, titiler_endpoint, **kwargs)
bounds = cog_bounds(url, titiler_endpoint)
self.add_tile_layer(tile_url, name, attribution, opacity, shown)
self.fit_bounds([[bounds[1], bounds[0]], [bounds[3], bounds[2]]])
if not hasattr(self, "cog_layer_dict"):
self.cog_layer_dict = {}
params = {
"url": url,
"titizer_endpoint": titiler_endpoint,
"bounds": bounds,
"type": "COG",
}
self.cog_layer_dict[name] = params
add_colorbar(self, vis_params=None, cmap='gray', discrete=False, label=None, orientation='horizontal', position='bottomright', transparent_bg=False, layer_name=None, font_size=9, axis_off=False, max_width=None, **kwargs)
¶
Add a matplotlib colorbar to the map
Parameters:
Name | Type | Description | Default |
---|---|---|---|
vis_params |
dict |
Visualization parameters as a dictionary. See https://developers.google.com/earth-engine/guides/image_visualization for options. |
None |
cmap |
str |
Matplotlib colormap. Defaults to "gray". See https://matplotlib.org/3.3.4/tutorials/colors/colormaps.html#sphx-glr-tutorials-colors-colormaps-py for options. |
'gray' |
discrete |
bool |
Whether to create a discrete colorbar. Defaults to False. |
False |
label |
str |
Label for the colorbar. Defaults to None. |
None |
orientation |
str |
Orientation of the colorbar, such as "vertical" and "horizontal". Defaults to "horizontal". |
'horizontal' |
position |
str |
Position of the colorbar on the map. It can be one of: topleft, topright, bottomleft, and bottomright. Defaults to "bottomright". |
'bottomright' |
transparent_bg |
bool |
Whether to use transparent background. Defaults to False. |
False |
layer_name |
str |
The layer name associated with the colorbar. Defaults to None. |
None |
font_size |
int |
Font size for the colorbar. Defaults to 9. |
9 |
axis_off |
bool |
Whether to turn off the axis. Defaults to False. |
False |
max_width |
str |
Maximum width of the colorbar in pixels. Defaults to None. |
None |
Exceptions:
Type | Description |
---|---|
TypeError |
If the vis_params is not a dictionary. |
ValueError |
If the orientation is not either horizontal or vertical. |
TypeError |
If the provided min value is not scalar type. |
TypeError |
If the provided max value is not scalar type. |
TypeError |
If the provided opacity value is not scalar type. |
TypeError |
If cmap or palette is not provided. |
Source code in geemap/geemap.py
def add_colorbar(
self,
vis_params=None,
cmap="gray",
discrete=False,
label=None,
orientation="horizontal",
position="bottomright",
transparent_bg=False,
layer_name=None,
font_size=9,
axis_off=False,
max_width=None,
**kwargs,
):
"""Add a matplotlib colorbar to the map
Args:
vis_params (dict): Visualization parameters as a dictionary. See https://developers.google.com/earth-engine/guides/image_visualization for options.
cmap (str, optional): Matplotlib colormap. Defaults to "gray". See https://matplotlib.org/3.3.4/tutorials/colors/colormaps.html#sphx-glr-tutorials-colors-colormaps-py for options.
discrete (bool, optional): Whether to create a discrete colorbar. Defaults to False.
label (str, optional): Label for the colorbar. Defaults to None.
orientation (str, optional): Orientation of the colorbar, such as "vertical" and "horizontal". Defaults to "horizontal".
position (str, optional): Position of the colorbar on the map. It can be one of: topleft, topright, bottomleft, and bottomright. Defaults to "bottomright".
transparent_bg (bool, optional): Whether to use transparent background. Defaults to False.
layer_name (str, optional): The layer name associated with the colorbar. Defaults to None.
font_size (int, optional): Font size for the colorbar. Defaults to 9.
axis_off (bool, optional): Whether to turn off the axis. Defaults to False.
max_width (str, optional): Maximum width of the colorbar in pixels. Defaults to None.
Raises:
TypeError: If the vis_params is not a dictionary.
ValueError: If the orientation is not either horizontal or vertical.
TypeError: If the provided min value is not scalar type.
TypeError: If the provided max value is not scalar type.
TypeError: If the provided opacity value is not scalar type.
TypeError: If cmap or palette is not provided.
"""
colorbar = map_widgets.Colorbar(
vis_params,
cmap,
discrete,
label,
orientation,
transparent_bg,
font_size,
axis_off,
max_width,
**kwargs,
)
colormap_ctrl = ipyleaflet.WidgetControl(
widget=colorbar, position=position, transparent_bg=transparent_bg
)
self._colorbar = colormap_ctrl
if layer_name in self.ee_layer_names:
if "colorbar" in self.ee_layer_dict[layer_name]:
self.remove_control(self.ee_layer_dict[layer_name]["colorbar"])
self.ee_layer_dict[layer_name]["colorbar"] = colormap_ctrl
if not hasattr(self, "colorbars"):
self.colorbars = [colormap_ctrl]
else:
self.colorbars.append(colormap_ctrl)
self.add(colormap_ctrl)
add_colorbar_branca(self, colors, vmin=0, vmax=1.0, index=None, caption='', categorical=False, step=None, height='45px', transparent_bg=False, position='bottomright', layer_name=None, **kwargs)
¶
Add a branca colorbar to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
colors |
list |
The set of colors to be used for interpolation. Colors can be provided in the form: * tuples of RGBA ints between 0 and 255 (e.g: (255, 255, 0) or (255, 255, 0, 255)) * tuples of RGBA floats between 0. and 1. (e.g: (1.,1.,0.) or (1., 1., 0., 1.)) * HTML-like string (e.g: “#ffff00) * a color name or shortcut (e.g: “y” or “yellow”) |
required |
vmin |
int |
The minimal value for the colormap. Values lower than vmin will be bound directly to colors[0].. Defaults to 0. |
0 |
vmax |
float |
The maximal value for the colormap. Values higher than vmax will be bound directly to colors[-1]. Defaults to 1.0. |
1.0 |
index |
list |
The values corresponding to each color. It has to be sorted, and have the same length as colors. If None, a regular grid between vmin and vmax is created.. Defaults to None. |
None |
caption |
str |
The caption for the colormap. Defaults to "". |
'' |
categorical |
bool |
Whether or not to create a categorical colormap. Defaults to False. |
False |
step |
int |
The step to split the LinearColormap into a StepColormap. Defaults to None. |
None |
height |
str |
The height of the colormap widget. Defaults to "45px". |
'45px' |
transparent_bg |
bool |
Whether to use transparent background for the colormap widget. Defaults to True. |
False |
position |
str |
The position for the colormap widget. Defaults to "bottomright". |
'bottomright' |
layer_name |
str |
Layer name of the colorbar to be associated with. Defaults to None. |
None |
Source code in geemap/geemap.py
def add_colorbar_branca(
self,
colors,
vmin=0,
vmax=1.0,
index=None,
caption="",
categorical=False,
step=None,
height="45px",
transparent_bg=False,
position="bottomright",
layer_name=None,
**kwargs,
):
"""Add a branca colorbar to the map.
Args:
colors (list): The set of colors to be used for interpolation. Colors can be provided in the form: * tuples of RGBA ints between 0 and 255 (e.g: (255, 255, 0) or (255, 255, 0, 255)) * tuples of RGBA floats between 0. and 1. (e.g: (1.,1.,0.) or (1., 1., 0., 1.)) * HTML-like string (e.g: “#ffff00) * a color name or shortcut (e.g: “y” or “yellow”)
vmin (int, optional): The minimal value for the colormap. Values lower than vmin will be bound directly to colors[0].. Defaults to 0.
vmax (float, optional): The maximal value for the colormap. Values higher than vmax will be bound directly to colors[-1]. Defaults to 1.0.
index (list, optional):The values corresponding to each color. It has to be sorted, and have the same length as colors. If None, a regular grid between vmin and vmax is created.. Defaults to None.
caption (str, optional): The caption for the colormap. Defaults to "".
categorical (bool, optional): Whether or not to create a categorical colormap. Defaults to False.
step (int, optional): The step to split the LinearColormap into a StepColormap. Defaults to None.
height (str, optional): The height of the colormap widget. Defaults to "45px".
transparent_bg (bool, optional): Whether to use transparent background for the colormap widget. Defaults to True.
position (str, optional): The position for the colormap widget. Defaults to "bottomright".
layer_name (str, optional): Layer name of the colorbar to be associated with. Defaults to None.
"""
from branca.colormap import LinearColormap
output = widgets.Output()
output.layout.height = height
if "width" in kwargs:
output.layout.width = kwargs["width"]
if isinstance(colors, Box):
try:
colors = list(colors["default"])
except Exception as e:
print("The provided color list is invalid.")
raise Exception(e)
if all(len(color) == 6 for color in colors):
colors = ["#" + color for color in colors]
colormap = LinearColormap(
colors=colors, index=index, vmin=vmin, vmax=vmax, caption=caption
)
if categorical:
if step is not None:
colormap = colormap.to_step(step)
elif index is not None:
colormap = colormap.to_step(len(index) - 1)
else:
colormap = colormap.to_step(3)
colormap_ctrl = ipyleaflet.WidgetControl(
widget=output,
position=position,
transparent_bg=transparent_bg,
**kwargs,
)
with output:
output.outputs = ()
display(colormap)
self._colorbar = colormap_ctrl
self.add(colormap_ctrl)
if not hasattr(self, "colorbars"):
self.colorbars = [colormap_ctrl]
else:
self.colorbars.append(colormap_ctrl)
if layer_name in self.ee_layer_names:
self.ee_layer_dict[layer_name]["colorbar"] = colormap_ctrl
add_controls(self, controls, position='topleft')
¶
Adds a list of controls to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
controls |
list |
A list of controls to add to the map. |
required |
position |
str |
The position of the controls on the map. Defaults to 'topleft'. |
'topleft' |
Source code in geemap/geemap.py
def add_controls(self, controls, position="topleft"):
"""Adds a list of controls to the map.
Args:
controls (list): A list of controls to add to the map.
position (str, optional): The position of the controls on the map. Defaults to 'topleft'.
"""
if not isinstance(controls, list):
controls = [controls]
for control in controls:
if isinstance(control, str):
control = control.lower()
if control == "data_ctrl":
from .toolbar import search_data_gui
search_data_gui(self, position=position)
elif control == "zoom_ctrl":
self.add(ipyleaflet.ZoomControl(position=position))
elif control == "fullscreen_ctrl":
fullscreen = ipyleaflet.FullScreenControl(position=position)
self.add(fullscreen)
elif control == "search_ctrl":
self.add_search_control(position=position)
elif control == "draw_ctrl":
self.add_draw_control(position=position)
elif control == "scale_ctrl":
scale_control = ipyleaflet.ScaleControl(position=position)
self.add(scale_control)
elif control == "measure_ctrl":
measure = ipyleaflet.MeasureControl(
position=position,
active_color="orange",
primary_length_unit="kilometers",
)
self.add(measure)
elif control == "toolbar_ctrl":
self.add_toolbar(position=position)
elif control == "layer_ctrl":
layer_control = ipyleaflet.LayersControl(position=position)
self.add(layer_control)
elif control == "attribution_ctrl":
attribution = ipyleaflet.AttributionControl(position=position)
self.add(attribution)
else:
raise ValueError(f"Unsupported control: {control}")
else:
self.add(control)
add_data(self, data, column, colors=None, labels=None, cmap=None, scheme='Quantiles', k=5, add_legend=True, legend_title=None, legend_kwds=None, classification_kwds=None, layer_name='Untitled', style=None, hover_style=None, style_callback=None, info_mode='on_hover', encoding='utf-8', **kwargs)
¶
Add vector data to the map with a variety of classification schemes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
str | pd.DataFrame | gpd.GeoDataFrame |
The data to classify. It can be a filepath to a vector dataset, a pandas dataframe, or a geopandas geodataframe. |
required |
column |
str |
The column to classify. |
required |
cmap |
str |
The name of a colormap recognized by matplotlib. Defaults to None. |
None |
colors |
list |
A list of colors to use for the classification. Defaults to None. |
None |
labels |
list |
A list of labels to use for the legend. Defaults to None. |
None |
scheme |
str |
Name of a choropleth classification scheme (requires mapclassify). Name of a choropleth classification scheme (requires mapclassify). A mapclassify.MapClassifier object will be used under the hood. Supported are all schemes provided by mapclassify (e.g. 'BoxPlot', 'EqualInterval', 'FisherJenks', 'FisherJenksSampled', 'HeadTailBreaks', 'JenksCaspall', 'JenksCaspallForced', 'JenksCaspallSampled', 'MaxP', 'MaximumBreaks', 'NaturalBreaks', 'Quantiles', 'Percentiles', 'StdMean', 'UserDefined'). Arguments can be passed in classification_kwds. |
'Quantiles' |
k |
int |
Number of classes (ignored if scheme is None or if column is categorical). Default to 5. |
5 |
legend_kwds |
dict |
Keyword arguments to pass to :func: |
None |
classification_kwds |
dict |
Keyword arguments to pass to mapclassify. Defaults to None. |
None |
layer_name |
str |
The layer name to be used.. Defaults to "Untitled". |
'Untitled' |
style |
dict |
A dictionary specifying the style to be used. Defaults to None. style is a dictionary of the following form: style = { "stroke": False, "color": "#ff0000", "weight": 1, "opacity": 1, "fill": True, "fillColor": "#ffffff", "fillOpacity": 1.0, "dashArray": "9" "clickable": True, } |
None |
hover_style |
dict |
Hover style dictionary. Defaults to {}. hover_style is a dictionary of the following form: hover_style = {"weight": style["weight"] + 1, "fillOpacity": 0.5} |
None |
style_callback |
function |
Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None. style_callback is a function that takes the feature as argument and should return a dictionary of the following form: style_callback = lambda feat: {"fillColor": feat["properties"]["color"]} |
None |
info_mode |
str |
Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover". |
'on_hover' |
encoding |
str |
The encoding of the GeoJSON file. Defaults to "utf-8". |
'utf-8' |
Source code in geemap/geemap.py
def add_data(
self,
data,
column,
colors=None,
labels=None,
cmap=None,
scheme="Quantiles",
k=5,
add_legend=True,
legend_title=None,
legend_kwds=None,
classification_kwds=None,
layer_name="Untitled",
style=None,
hover_style=None,
style_callback=None,
info_mode="on_hover",
encoding="utf-8",
**kwargs,
):
"""Add vector data to the map with a variety of classification schemes.
Args:
data (str | pd.DataFrame | gpd.GeoDataFrame): The data to classify. It can be a filepath to a vector dataset, a pandas dataframe, or a geopandas geodataframe.
column (str): The column to classify.
cmap (str, optional): The name of a colormap recognized by matplotlib. Defaults to None.
colors (list, optional): A list of colors to use for the classification. Defaults to None.
labels (list, optional): A list of labels to use for the legend. Defaults to None.
scheme (str, optional): Name of a choropleth classification scheme (requires mapclassify).
Name of a choropleth classification scheme (requires mapclassify).
A mapclassify.MapClassifier object will be used
under the hood. Supported are all schemes provided by mapclassify (e.g.
'BoxPlot', 'EqualInterval', 'FisherJenks', 'FisherJenksSampled',
'HeadTailBreaks', 'JenksCaspall', 'JenksCaspallForced',
'JenksCaspallSampled', 'MaxP', 'MaximumBreaks',
'NaturalBreaks', 'Quantiles', 'Percentiles', 'StdMean',
'UserDefined'). Arguments can be passed in classification_kwds.
k (int, optional): Number of classes (ignored if scheme is None or if column is categorical). Default to 5.
legend_kwds (dict, optional): Keyword arguments to pass to :func:`matplotlib.pyplot.legend` or `matplotlib.pyplot.colorbar`. Defaults to None.
Keyword arguments to pass to :func:`matplotlib.pyplot.legend` or
Additional accepted keywords when `scheme` is specified:
fmt : string
A formatting specification for the bin edges of the classes in the
legend. For example, to have no decimals: ``{"fmt": "{:.0f}"}``.
labels : list-like
A list of legend labels to override the auto-generated labblels.
Needs to have the same number of elements as the number of
classes (`k`).
interval : boolean (default False)
An option to control brackets from mapclassify legend.
If True, open/closed interval brackets are shown in the legend.
classification_kwds (dict, optional): Keyword arguments to pass to mapclassify. Defaults to None.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to None.
style is a dictionary of the following form:
style = {
"stroke": False,
"color": "#ff0000",
"weight": 1,
"opacity": 1,
"fill": True,
"fillColor": "#ffffff",
"fillOpacity": 1.0,
"dashArray": "9"
"clickable": True,
}
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
hover_style is a dictionary of the following form:
hover_style = {"weight": style["weight"] + 1, "fillOpacity": 0.5}
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
style_callback is a function that takes the feature as argument and should return a dictionary of the following form:
style_callback = lambda feat: {"fillColor": feat["properties"]["color"]}
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
encoding (str, optional): The encoding of the GeoJSON file. Defaults to "utf-8".
"""
gdf, legend_dict = classify(
data=data,
column=column,
cmap=cmap,
colors=colors,
labels=labels,
scheme=scheme,
k=k,
legend_kwds=legend_kwds,
classification_kwds=classification_kwds,
)
if legend_title is None:
legend_title = column
if style is None:
style = {
# "stroke": False,
# "color": "#ff0000",
"weight": 1,
"opacity": 1,
# "fill": True,
# "fillColor": "#ffffff",
"fillOpacity": 1.0,
# "dashArray": "9"
# "clickable": True,
}
if colors is not None:
style["color"] = "#000000"
if hover_style is None:
hover_style = {"weight": style["weight"] + 1, "fillOpacity": 0.5}
if style_callback is None:
style_callback = lambda feat: {"fillColor": feat["properties"]["color"]}
self.add_gdf(
gdf,
layer_name=layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
info_mode=info_mode,
encoding=encoding,
**kwargs,
)
if add_legend:
self.add_legend(title=legend_title, legend_dict=legend_dict)
add_draw_control(self, position='topleft')
¶
Add a draw control to the map
Parameters:
Name | Type | Description | Default |
---|---|---|---|
position |
str |
The position of the draw control. Defaults to "topleft". |
'topleft' |
Source code in geemap/geemap.py
def add_draw_control(self, position="topleft"):
"""Add a draw control to the map
Args:
position (str, optional): The position of the draw control. Defaults to "topleft".
"""
draw_control = ipyleaflet.DrawControl(
marker={"shapeOptions": {"color": "#3388ff"}},
rectangle={"shapeOptions": {"color": "#3388ff"}},
# circle={"shapeOptions": {"color": "#3388ff"}},
circlemarker={},
edit=True,
remove=True,
position=position,
)
# Handles draw events
def handle_draw(target, action, geo_json):
try:
self._roi_start = True
geom = geojson_to_ee(geo_json, False)
self.user_roi = geom
feature = ee.Feature(geom)
self.draw_last_feature = feature
if not hasattr(self, "_draw_count"):
self._draw_count = 0
if action == "deleted" and len(self.draw_features) > 0:
self.draw_features.remove(feature)
self._draw_count -= 1
else:
self.draw_features.append(feature)
self._draw_count += 1
collection = ee.FeatureCollection(self.draw_features)
self.user_rois = collection
ee_draw_layer = EELeafletTileLayer(
collection, {"color": "blue"}, "Drawn Features", False, 0.5
)
draw_layer_index = self.find_layer_index("Drawn Features")
if draw_layer_index == -1:
self.add(ee_draw_layer)
self.draw_layer = ee_draw_layer
else:
self.substitute_layer(self.draw_layer, ee_draw_layer)
self.draw_layer = ee_draw_layer
self._roi_end = True
self._roi_start = False
except Exception as e:
self._draw_count = 0
self.draw_features = []
self.draw_last_feature = None
self.draw_layer = None
self.user_roi = None
self._roi_start = False
self._roi_end = False
print("There was an error creating Earth Engine Feature.")
raise Exception(e)
draw_control.on_draw(handle_draw)
self.add(draw_control)
self.draw_control = draw_control
add_draw_control_lite(self, position='topleft')
¶
Add a lite version draw control to the map for the plotting tool.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
position |
str |
The position of the draw control. Defaults to "topleft". |
'topleft' |
Source code in geemap/geemap.py
def add_draw_control_lite(self, position="topleft"):
"""Add a lite version draw control to the map for the plotting tool.
Args:
position (str, optional): The position of the draw control. Defaults to "topleft".
"""
draw_control_lite = ipyleaflet.DrawControl(
marker={},
rectangle={"shapeOptions": {"color": "#3388ff"}},
circle={"shapeOptions": {"color": "#3388ff"}},
circlemarker={},
polyline={},
polygon={},
edit=False,
remove=False,
position=position,
)
self.draw_control_lite = draw_control_lite
add_ee_layer(self, ee_object, vis_params={}, name=None, shown=True, opacity=1.0)
¶
Adds a given EE object to the map as a layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ee_object |
Collection|Feature|Image|MapId |
The object to add to the map. |
required |
vis_params |
dict |
The visualization parameters. Defaults to {}. |
{} |
name |
str |
The name of the layer. Defaults to 'Layer N'. |
None |
shown |
bool |
A flag indicating whether the layer should be on by default. Defaults to True. |
True |
opacity |
float |
The layer's opacity represented as a number between 0 and 1. Defaults to 1. |
1.0 |
Source code in geemap/geemap.py
def add_ee_layer(
self, ee_object, vis_params={}, name=None, shown=True, opacity=1.0
):
"""Adds a given EE object to the map as a layer.
Args:
ee_object (Collection|Feature|Image|MapId): The object to add to the map.
vis_params (dict, optional): The visualization parameters. Defaults to {}.
name (str, optional): The name of the layer. Defaults to 'Layer N'.
shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
opacity (float, optional): The layer's opacity represented as a number between 0 and 1. Defaults to 1.
"""
if name is None:
layer_count = len(self.layers)
name = "Layer " + str(layer_count + 1)
tile_layer = EELeafletTileLayer(ee_object, vis_params, name, shown, opacity)
layer = self.find_layer(name=name)
if layer is not None:
existing_object = self.ee_layer_dict[name]["ee_object"]
if isinstance(existing_object, (ee.Image, ee.ImageCollection)):
self.ee_raster_layers.remove(existing_object)
self.ee_raster_layer_names.remove(name)
if (
hasattr(self, "_plot_dropdown_widget")
and self._plot_dropdown_widget is not None
):
self._plot_dropdown_widget.options = list(
self.ee_raster_layer_names
)
elif isinstance(ee_object, (ee.Geometry, ee.Feature, ee.FeatureCollection)):
self.ee_vector_layers.remove(existing_object)
self.ee_vector_layer_names.remove(name)
self.ee_layers.remove(existing_object)
self.ee_layer_names.remove(name)
self.remove_layer(layer)
self.ee_layers.append(ee_object)
if name not in self.ee_layer_names:
self.ee_layer_names.append(name)
self.ee_layer_dict[name] = {
"ee_object": ee_object,
"ee_layer": tile_layer,
"vis_params": vis_params,
}
self.add(tile_layer)
if isinstance(ee_object, (ee.Image, ee.ImageCollection)):
self.ee_raster_layers.append(ee_object)
self.ee_raster_layer_names.append(name)
if (
hasattr(self, "_plot_dropdown_widget")
and self._plot_dropdown_widget is not None
):
self._plot_dropdown_widget.options = list(self.ee_raster_layer_names)
elif isinstance(ee_object, (ee.Geometry, ee.Feature, ee.FeatureCollection)):
self.ee_vector_layers.append(ee_object)
self.ee_vector_layer_names.append(name)
arc_add_layer(tile_layer.url_format, name, shown, opacity)
add_gdf(self, gdf, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover', zoom_to_layer=True, encoding='utf-8')
¶
Adds a GeoDataFrame to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gdf |
GeoDataFrame |
A GeoPandas GeoDataFrame. |
required |
layer_name |
str |
The layer name to be used.. Defaults to "Untitled". |
'Untitled' |
style |
dict |
A dictionary specifying the style to be used. Defaults to {}. |
{} |
hover_style |
dict |
Hover style dictionary. Defaults to {}. |
{} |
style_callback |
function |
Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None. |
None |
fill_colors |
list |
The random colors to use for filling polygons. Defaults to ["black"]. |
['black'] |
info_mode |
str |
Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover". |
'on_hover' |
zoom_to_layer |
bool |
Whether to zoom to the layer. |
True |
encoding |
str |
The encoding of the GeoDataFrame. Defaults to "utf-8". |
'utf-8' |
Source code in geemap/geemap.py
def add_gdf(
self,
gdf,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
zoom_to_layer=True,
encoding="utf-8",
):
"""Adds a GeoDataFrame to the map.
Args:
gdf (GeoDataFrame): A GeoPandas GeoDataFrame.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
zoom_to_layer (bool, optional): Whether to zoom to the layer.
encoding (str, optional): The encoding of the GeoDataFrame. Defaults to "utf-8".
"""
data = gdf_to_geojson(gdf, epsg="4326")
self.add_geojson(
data,
layer_name,
style,
hover_style,
style_callback,
fill_colors,
info_mode,
encoding,
)
if zoom_to_layer:
import numpy as np
bounds = gdf.to_crs(epsg="4326").bounds
west = np.min(bounds["minx"])
south = np.min(bounds["miny"])
east = np.max(bounds["maxx"])
north = np.max(bounds["maxy"])
self.fit_bounds([[south, east], [north, west]])
add_gdf_from_postgis(self, sql, con, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover', zoom_to_layer=True, **kwargs)
¶
Reads a PostGIS database and returns data as a GeoDataFrame to be added to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sql |
str |
SQL query to execute in selecting entries from database, or name of the table to read from the database. |
required |
con |
sqlalchemy.engine.Engine |
Active connection to the database to query. |
required |
layer_name |
str |
The layer name to be used.. Defaults to "Untitled". |
'Untitled' |
style |
dict |
A dictionary specifying the style to be used. Defaults to {}. |
{} |
hover_style |
dict |
Hover style dictionary. Defaults to {}. |
{} |
style_callback |
function |
Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None. |
None |
fill_colors |
list |
The random colors to use for filling polygons. Defaults to ["black"]. |
['black'] |
info_mode |
str |
Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover". |
'on_hover' |
zoom_to_layer |
bool |
Whether to zoom to the layer. |
True |
Source code in geemap/geemap.py
def add_gdf_from_postgis(
self,
sql,
con,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
zoom_to_layer=True,
**kwargs,
):
"""Reads a PostGIS database and returns data as a GeoDataFrame to be added to the map.
Args:
sql (str): SQL query to execute in selecting entries from database, or name of the table to read from the database.
con (sqlalchemy.engine.Engine): Active connection to the database to query.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
zoom_to_layer (bool, optional): Whether to zoom to the layer.
"""
gdf = read_postgis(sql, con, **kwargs)
gdf = gdf.to_crs("epsg:4326")
self.add_gdf(
gdf,
layer_name,
style,
hover_style,
style_callback,
fill_colors,
info_mode,
zoom_to_layer,
)
add_geojson(self, in_geojson, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover', encoding='utf-8')
¶
Adds a GeoJSON file to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_geojson |
str | dict |
The file path or http URL to the input GeoJSON or a dictionary containing the geojson. |
required |
layer_name |
str |
The layer name to be used.. Defaults to "Untitled". |
'Untitled' |
style |
dict |
A dictionary specifying the style to be used. Defaults to {}. |
{} |
hover_style |
dict |
Hover style dictionary. Defaults to {}. |
{} |
style_callback |
function |
Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None. |
None |
fill_colors |
list |
The random colors to use for filling polygons. Defaults to ["black"]. |
['black'] |
info_mode |
str |
Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover". |
'on_hover' |
encoding |
str |
The encoding of the GeoJSON file. Defaults to "utf-8". |
'utf-8' |
Exceptions:
Type | Description |
---|---|
FileNotFoundError |
The provided GeoJSON file could not be found. |
Source code in geemap/geemap.py
def add_geojson(
self,
in_geojson,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
encoding="utf-8",
):
"""Adds a GeoJSON file to the map.
Args:
in_geojson (str | dict): The file path or http URL to the input GeoJSON or a dictionary containing the geojson.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
encoding (str, optional): The encoding of the GeoJSON file. Defaults to "utf-8".
Raises:
FileNotFoundError: The provided GeoJSON file could not be found.
"""
import json
import random
import requests
import warnings
warnings.filterwarnings("ignore")
style_callback_only = False
if len(style) == 0 and style_callback is not None:
style_callback_only = True
try:
if isinstance(in_geojson, str):
if in_geojson.startswith("http"):
in_geojson = github_raw_url(in_geojson)
data = requests.get(in_geojson).json()
else:
in_geojson = os.path.abspath(in_geojson)
if not os.path.exists(in_geojson):
raise FileNotFoundError(
"The provided GeoJSON file could not be found."
)
with open(in_geojson, encoding=encoding) as f:
data = json.load(f)
elif isinstance(in_geojson, dict):
data = in_geojson
else:
raise TypeError("The input geojson must be a type of str or dict.")
except Exception as e:
raise Exception(e)
if not style:
style = {
# "stroke": True,
"color": "#000000",
"weight": 1,
"opacity": 1,
# "fill": True,
# "fillColor": "#ffffff",
"fillOpacity": 0.1,
# "dashArray": "9"
# "clickable": True,
}
elif "weight" not in style:
style["weight"] = 1
if not hover_style:
hover_style = {"weight": style["weight"] + 1, "fillOpacity": 0.5}
def random_color(feature):
return {
"color": "black",
"fillColor": random.choice(fill_colors),
}
toolbar_button = widgets.ToggleButton(
value=True,
tooltip="Toolbar",
icon="info",
layout=widgets.Layout(
width="28px", height="28px", padding="0px 0px 0px 4px"
),
)
close_button = widgets.ToggleButton(
value=False,
tooltip="Close the tool",
icon="times",
# button_style="primary",
layout=widgets.Layout(
height="28px", width="28px", padding="0px 0px 0px 4px"
),
)
html = widgets.HTML()
html.layout.margin = "0px 10px 0px 10px"
html.layout.max_height = "250px"
html.layout.max_width = "250px"
output_widget = widgets.VBox(
[widgets.HBox([toolbar_button, close_button]), html]
)
info_control = ipyleaflet.WidgetControl(
widget=output_widget, position="bottomright"
)
if info_mode in ["on_hover", "on_click"]:
self.add(info_control)
def toolbar_btn_click(change):
if change["new"]:
close_button.value = False
output_widget.children = [
widgets.VBox([widgets.HBox([toolbar_button, close_button]), html])
]
else:
output_widget.children = [widgets.HBox([toolbar_button, close_button])]
toolbar_button.observe(toolbar_btn_click, "value")
def close_btn_click(change):
if change["new"]:
toolbar_button.value = False
if info_control in self.controls:
self.remove_control(info_control)
output_widget.close()
close_button.observe(close_btn_click, "value")
def update_html(feature, **kwargs):
value = [
"<b>{}: </b>{}<br>".format(prop, feature["properties"][prop])
for prop in feature["properties"].keys()
][:-1]
value = """{}""".format("".join(value))
html.value = value
if style_callback is None:
style_callback = random_color
if style_callback_only:
geojson = ipyleaflet.GeoJSON(
data=data,
hover_style=hover_style,
style_callback=style_callback,
name=layer_name,
)
else:
geojson = ipyleaflet.GeoJSON(
data=data,
style=style,
hover_style=hover_style,
style_callback=style_callback,
name=layer_name,
)
if info_mode == "on_hover":
geojson.on_hover(update_html)
elif info_mode == "on_click":
geojson.on_click(update_html)
self.add(geojson)
self.geojson_layers.append(geojson)
if not hasattr(self, "json_layer_dict"):
self.json_layer_dict = {}
params = {
"data": geojson,
"style": style,
"hover_style": hover_style,
"style_callback": style_callback,
}
self.json_layer_dict[layer_name] = params
add_gui(self, name, position='topright', opened=True, show_close_button=True, **kwargs)
¶
Add a GUI to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str |
The name of the GUI. Options include "layer_manager", "inspector", "plot", and "timelapse". |
required |
position |
str |
The position of the GUI. Defaults to "topright". |
'topright' |
opened |
bool |
Whether the GUI is opened. Defaults to True. |
True |
show_close_button |
bool |
Whether to show the close button. Defaults to True. |
True |
Source code in geemap/geemap.py
def add_gui(
self, name, position="topright", opened=True, show_close_button=True, **kwargs
):
"""Add a GUI to the map.
Args:
name (str): The name of the GUI. Options include "layer_manager", "inspector", "plot", and "timelapse".
position (str, optional): The position of the GUI. Defaults to "topright".
opened (bool, optional): Whether the GUI is opened. Defaults to True.
show_close_button (bool, optional): Whether to show the close button. Defaults to True.
"""
name = name.lower()
if name == "layer_manager":
self.add_layer_manager(position, opened, show_close_button, **kwargs)
elif name == "inspector":
self.add_inspector(
position=position,
opened=opened,
show_close_button=show_close_button,
**kwargs,
)
elif name == "plot":
self.add_plot_gui(position, **kwargs)
elif name == "timelapse":
from .toolbar import timelapse_gui
timelapse_gui(self, **kwargs)
add_heatmap(self, data, latitude='latitude', longitude='longitude', value='value', name='Heat map', radius=25, **kwargs)
¶
Adds a heat map to the map. Reference: https://ipyleaflet.readthedocs.io/en/latest/api_reference/heatmap.html
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
str | list | pd.DataFrame |
File path or HTTP URL to the input file or a list of data points in the format of [[x1, y1, z1], [x2, y2, z2]]. For example, https://raw.githubusercontent.com/giswqs/leafmap/master/examples/data/world_cities.csv |
required |
latitude |
str |
The column name of latitude. Defaults to "latitude". |
'latitude' |
longitude |
str |
The column name of longitude. Defaults to "longitude". |
'longitude' |
value |
str |
The column name of values. Defaults to "value". |
'value' |
name |
str |
Layer name to use. Defaults to "Heat map". |
'Heat map' |
radius |
int |
Radius of each “point” of the heatmap. Defaults to 25. |
25 |
Exceptions:
Type | Description |
---|---|
ValueError |
If data is not a list. |
Source code in geemap/geemap.py
def add_heatmap(
self,
data,
latitude="latitude",
longitude="longitude",
value="value",
name="Heat map",
radius=25,
**kwargs,
):
"""Adds a heat map to the map. Reference: https://ipyleaflet.readthedocs.io/en/latest/api_reference/heatmap.html
Args:
data (str | list | pd.DataFrame): File path or HTTP URL to the input file or a list of data points in the format of [[x1, y1, z1], [x2, y2, z2]]. For example, https://raw.githubusercontent.com/giswqs/leafmap/master/examples/data/world_cities.csv
latitude (str, optional): The column name of latitude. Defaults to "latitude".
longitude (str, optional): The column name of longitude. Defaults to "longitude".
value (str, optional): The column name of values. Defaults to "value".
name (str, optional): Layer name to use. Defaults to "Heat map".
radius (int, optional): Radius of each “point” of the heatmap. Defaults to 25.
Raises:
ValueError: If data is not a list.
"""
import pandas as pd
from ipyleaflet import Heatmap
try:
if isinstance(data, str):
df = pd.read_csv(data)
data = df[[latitude, longitude, value]].values.tolist()
elif isinstance(data, pd.DataFrame):
data = data[[latitude, longitude, value]].values.tolist()
elif isinstance(data, list):
pass
else:
raise ValueError("data must be a list, a DataFrame, or a file path.")
heatmap = Heatmap(locations=data, radius=radius, name=name, **kwargs)
self.add(heatmap)
except Exception as e:
raise Exception(e)
add_html(self, html, position='bottomright', **kwargs)
¶
Add HTML to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
html |
str |
The HTML to add. |
required |
position |
str |
The position of the HTML, can be one of "topleft", "topright", "bottomleft", "bottomright". Defaults to "bottomright". |
'bottomright' |
Source code in geemap/geemap.py
def add_html(self, html, position="bottomright", **kwargs):
"""Add HTML to the map.
Args:
html (str): The HTML to add.
position (str, optional): The position of the HTML, can be one of "topleft",
"topright", "bottomleft", "bottomright". Defaults to "bottomright".
"""
self.add_widget(html, position=position, **kwargs)
add_image(self, image, position='bottomright', **kwargs)
¶
Add an image to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image |
str | ipywidgets.Image |
The image to add. |
required |
position |
str |
The position of the image, can be one of "topleft", "topright", "bottomleft", "bottomright". Defaults to "bottomright". |
'bottomright' |
Source code in geemap/geemap.py
def add_image(self, image, position="bottomright", **kwargs):
"""Add an image to the map.
Args:
image (str | ipywidgets.Image): The image to add.
position (str, optional): The position of the image, can be one of "topleft",
"topright", "bottomleft", "bottomright". Defaults to "bottomright".
"""
if isinstance(image, str):
if image.startswith("http"):
image = widgets.Image(value=requests.get(image).content, **kwargs)
elif os.path.exists(image):
with open(image, "rb") as f:
image = widgets.Image(value=f.read(), **kwargs)
elif isinstance(image, widgets.Image):
pass
else:
raise Exception("Invalid image")
self.add_widget(image, position=position)
add_inspector(self, names=None, visible=True, decimals=2, position='topright', opened=True, show_close_button=True)
¶
Add the Inspector GUI to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
names |
str | list |
The names of the layers to be included. Defaults to None. |
None |
visible |
bool |
Whether to inspect visible layers only. Defaults to True. |
True |
decimals |
int |
The number of decimal places to round the coordinates. Defaults to 2. |
2 |
position |
str |
The position of the Inspector GUI. Defaults to "topright". |
'topright' |
opened |
bool |
Whether the control is opened. Defaults to True. |
True |
Source code in geemap/geemap.py
def add_inspector(
self,
names=None,
visible=True,
decimals=2,
position="topright",
opened=True,
show_close_button=True,
):
"""Add the Inspector GUI to the map.
Args:
names (str | list, optional): The names of the layers to be included. Defaults to None.
visible (bool, optional): Whether to inspect visible layers only. Defaults to True.
decimals (int, optional): The number of decimal places to round the coordinates. Defaults to 2.
position (str, optional): The position of the Inspector GUI. Defaults to "topright".
opened (bool, optional): Whether the control is opened. Defaults to True.
"""
from .toolbar import ee_inspector_gui
ee_inspector_gui(
self, names, visible, decimals, position, opened, show_close_button
)
add_kml(self, in_kml, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover')
¶
Adds a GeoJSON file to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_kml |
str |
The input file path to the KML. |
required |
layer_name |
str |
The layer name to be used.. Defaults to "Untitled". |
'Untitled' |
style |
dict |
A dictionary specifying the style to be used. Defaults to {}. |
{} |
hover_style |
dict |
Hover style dictionary. Defaults to {}. |
{} |
style_callback |
function |
Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None. |
None |
fill_colors |
list |
The random colors to use for filling polygons. Defaults to ["black"]. |
['black'] |
info_mode |
str |
Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover". |
'on_hover' |
Exceptions:
Type | Description |
---|---|
FileNotFoundError |
The provided KML file could not be found. |
Source code in geemap/geemap.py
def add_kml(
self,
in_kml,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
):
"""Adds a GeoJSON file to the map.
Args:
in_kml (str): The input file path to the KML.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
Raises:
FileNotFoundError: The provided KML file could not be found.
"""
if isinstance(in_kml, str) and in_kml.startswith("http"):
in_kml = github_raw_url(in_kml)
in_kml = download_file(in_kml)
in_kml = os.path.abspath(in_kml)
if not os.path.exists(in_kml):
raise FileNotFoundError("The provided KML file could not be found.")
self.add_vector(
in_kml,
layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
fill_colors=fill_colors,
info_mode=info_mode,
)
add_labels(self, data, column, font_size='12pt', font_color='black', font_family='arial', font_weight='normal', x='longitude', y='latitude', draggable=True, layer_name='Labels', **kwargs)
¶
Adds a label layer to the map. Reference: https://ipyleaflet.readthedocs.io/en/latest/api_reference/divicon.html
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
pd.DataFrame | ee.FeatureCollection |
The input data to label. |
required |
column |
str |
The column name of the data to label. |
required |
font_size |
str |
The font size of the labels. Defaults to "12pt". |
'12pt' |
font_color |
str |
The font color of the labels. Defaults to "black". |
'black' |
font_family |
str |
The font family of the labels. Defaults to "arial". |
'arial' |
font_weight |
str |
The font weight of the labels, can be normal, bold. Defaults to "normal". |
'normal' |
x |
str |
The column name of the longitude. Defaults to "longitude". |
'longitude' |
y |
str |
The column name of the latitude. Defaults to "latitude". |
'latitude' |
draggable |
bool |
Whether the labels are draggable. Defaults to True. |
True |
layer_name |
str |
Layer name to use. Defaults to "Labels". |
'Labels' |
Source code in geemap/geemap.py
def add_labels(
self,
data,
column,
font_size="12pt",
font_color="black",
font_family="arial",
font_weight="normal",
x="longitude",
y="latitude",
draggable=True,
layer_name="Labels",
**kwargs,
):
"""Adds a label layer to the map. Reference: https://ipyleaflet.readthedocs.io/en/latest/api_reference/divicon.html
Args:
data (pd.DataFrame | ee.FeatureCollection): The input data to label.
column (str): The column name of the data to label.
font_size (str, optional): The font size of the labels. Defaults to "12pt".
font_color (str, optional): The font color of the labels. Defaults to "black".
font_family (str, optional): The font family of the labels. Defaults to "arial".
font_weight (str, optional): The font weight of the labels, can be normal, bold. Defaults to "normal".
x (str, optional): The column name of the longitude. Defaults to "longitude".
y (str, optional): The column name of the latitude. Defaults to "latitude".
draggable (bool, optional): Whether the labels are draggable. Defaults to True.
layer_name (str, optional): Layer name to use. Defaults to "Labels".
"""
import warnings
import pandas as pd
warnings.filterwarnings("ignore")
if isinstance(data, ee.FeatureCollection):
centroids = vector_centroids(data)
df = ee_to_df(centroids)
elif isinstance(data, pd.DataFrame):
df = data
elif isinstance(data, str):
ext = os.path.splitext(data)[1]
if ext == ".csv":
df = pd.read_csv(data)
elif ext in [".geojson", ".json", ".shp", ".gpkg"]:
try:
import geopandas as gpd
df = gpd.read_file(data)
df[x] = df.centroid.x
df[y] = df.centroid.y
except Exception as _:
print("geopandas is required to read geojson.")
return
else:
raise ValueError("data must be a DataFrame or an ee.FeatureCollection.")
if column not in df.columns:
raise ValueError(f"column must be one of {', '.join(df.columns)}.")
if x not in df.columns:
raise ValueError(f"column must be one of {', '.join(df.columns)}.")
if y not in df.columns:
raise ValueError(f"column must be one of {', '.join(df.columns)}.")
try:
size = int(font_size.replace("pt", ""))
except:
raise ValueError("font_size must be something like '10pt'")
labels = []
for index in df.index:
html = f'<div style="font-size: {font_size};color:{font_color};font-family:{font_family};font-weight: {font_weight}">{df[column][index]}</div>'
marker = ipyleaflet.Marker(
location=[df[y][index], df[x][index]],
icon=ipyleaflet.DivIcon(
icon_size=(1, 1),
icon_anchor=(size, size),
html=html,
**kwargs,
),
draggable=draggable,
)
labels.append(marker)
layer_group = ipyleaflet.LayerGroup(layers=labels, name=layer_name)
self.add(layer_group)
self.labels = layer_group
add_landsat_ts_gif(self, layer_name='Timelapse', roi=None, label=None, start_year=1984, end_year=2021, start_date='06-10', end_date='09-20', bands=['NIR', 'Red', 'Green'], vis_params=None, dimensions=768, frames_per_second=10, font_size=30, font_color='white', add_progress_bar=True, progress_bar_color='white', progress_bar_height=5, out_gif=None, download=False, apply_fmask=True, nd_bands=None, nd_threshold=0, nd_palette=['black', 'blue'])
¶
Adds a Landsat timelapse to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
layer_name |
str |
Layer name to show under the layer control. Defaults to 'Timelapse'. |
'Timelapse' |
roi |
object |
Region of interest to create the timelapse. Defaults to None. |
None |
label |
str |
A label to show on the GIF, such as place name. Defaults to None. |
None |
start_year |
int |
Starting year for the timelapse. Defaults to 1984. |
1984 |
end_year |
int |
Ending year for the timelapse. Defaults to 2021. |
2021 |
start_date |
str |
Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'. |
'06-10' |
end_date |
str |
Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'. |
'09-20' |
bands |
list |
Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'pixel_qa']. Defaults to ['NIR', 'Red', 'Green']. |
['NIR', 'Red', 'Green'] |
vis_params |
dict |
Visualization parameters. Defaults to None. |
None |
dimensions |
int |
a number or pair of numbers in format WIDTHxHEIGHT) Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768. |
768 |
frames_per_second |
int |
Animation speed. Defaults to 10. |
10 |
font_size |
int |
Font size of the animated text and label. Defaults to 30. |
30 |
font_color |
str |
Font color of the animated text and label. Defaults to 'black'. |
'white' |
add_progress_bar |
bool |
Whether to add a progress bar at the bottom of the GIF. Defaults to True. |
True |
progress_bar_color |
str |
Color for the progress bar. Defaults to 'white'. |
'white' |
progress_bar_height |
int |
Height of the progress bar. Defaults to 5. |
5 |
out_gif |
str |
File path to the output animated GIF. Defaults to None. |
None |
download |
bool |
Whether to download the gif. Defaults to False. |
False |
apply_fmask |
bool |
Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking. |
True |
nd_bands |
list |
A list of names specifying the bands to use, e.g., ['Green', 'SWIR1']. The normalized difference is computed as (first − second) / (first + second). Note that negative input values are forced to 0 so that the result is confined to the range (-1, 1). |
None |
nd_threshold |
float |
The threshold for extacting pixels from the normalized difference band. |
0 |
nd_palette |
str |
The color palette to use for displaying the normalized difference band. |
['black', 'blue'] |
Source code in geemap/geemap.py
def add_landsat_ts_gif(
self,
layer_name="Timelapse",
roi=None,
label=None,
start_year=1984,
end_year=2021,
start_date="06-10",
end_date="09-20",
bands=["NIR", "Red", "Green"],
vis_params=None,
dimensions=768,
frames_per_second=10,
font_size=30,
font_color="white",
add_progress_bar=True,
progress_bar_color="white",
progress_bar_height=5,
out_gif=None,
download=False,
apply_fmask=True,
nd_bands=None,
nd_threshold=0,
nd_palette=["black", "blue"],
):
"""Adds a Landsat timelapse to the map.
Args:
layer_name (str, optional): Layer name to show under the layer control. Defaults to 'Timelapse'.
roi (object, optional): Region of interest to create the timelapse. Defaults to None.
label (str, optional): A label to show on the GIF, such as place name. Defaults to None.
start_year (int, optional): Starting year for the timelapse. Defaults to 1984.
end_year (int, optional): Ending year for the timelapse. Defaults to 2021.
start_date (str, optional): Starting date (month-day) each year for filtering ImageCollection. Defaults to '06-10'.
end_date (str, optional): Ending date (month-day) each year for filtering ImageCollection. Defaults to '09-20'.
bands (list, optional): Three bands selected from ['Blue', 'Green', 'Red', 'NIR', 'SWIR1', 'SWIR2', 'pixel_qa']. Defaults to ['NIR', 'Red', 'Green'].
vis_params (dict, optional): Visualization parameters. Defaults to None.
dimensions (int, optional): a number or pair of numbers in format WIDTHxHEIGHT) Maximum dimensions of the thumbnail to render, in pixels. If only one number is passed, it is used as the maximum, and the other dimension is computed by proportional scaling. Defaults to 768.
frames_per_second (int, optional): Animation speed. Defaults to 10.
font_size (int, optional): Font size of the animated text and label. Defaults to 30.
font_color (str, optional): Font color of the animated text and label. Defaults to 'black'.
add_progress_bar (bool, optional): Whether to add a progress bar at the bottom of the GIF. Defaults to True.
progress_bar_color (str, optional): Color for the progress bar. Defaults to 'white'.
progress_bar_height (int, optional): Height of the progress bar. Defaults to 5.
out_gif (str, optional): File path to the output animated GIF. Defaults to None.
download (bool, optional): Whether to download the gif. Defaults to False.
apply_fmask (bool, optional): Whether to apply Fmask (Function of mask) for automated clouds, cloud shadows, snow, and water masking.
nd_bands (list, optional): A list of names specifying the bands to use, e.g., ['Green', 'SWIR1']. The normalized difference is computed as (first − second) / (first + second). Note that negative input values are forced to 0 so that the result is confined to the range (-1, 1).
nd_threshold (float, optional): The threshold for extacting pixels from the normalized difference band.
nd_palette (str, optional): The color palette to use for displaying the normalized difference band.
"""
try:
if roi is None:
if self.draw_last_feature is not None:
feature = self.draw_last_feature
roi = feature.geometry()
else:
roi = ee.Geometry.Polygon(
[
[
[-115.471773, 35.892718],
[-115.471773, 36.409454],
[-114.271283, 36.409454],
[-114.271283, 35.892718],
[-115.471773, 35.892718],
]
],
None,
False,
)
elif isinstance(roi, ee.Feature) or isinstance(roi, ee.FeatureCollection):
roi = roi.geometry()
elif isinstance(roi, ee.Geometry):
pass
else:
print("The provided roi is invalid. It must be an ee.Geometry")
return
geojson = ee_to_geojson(roi)
bounds = minimum_bounding_box(geojson)
geojson = adjust_longitude(geojson)
roi = ee.Geometry(geojson)
in_gif = landsat_timelapse(
roi=roi,
out_gif=out_gif,
start_year=start_year,
end_year=end_year,
start_date=start_date,
end_date=end_date,
bands=bands,
vis_params=vis_params,
dimensions=dimensions,
frames_per_second=frames_per_second,
apply_fmask=apply_fmask,
nd_bands=nd_bands,
nd_threshold=nd_threshold,
nd_palette=nd_palette,
font_size=font_size,
font_color=font_color,
progress_bar_color=progress_bar_color,
progress_bar_height=progress_bar_height,
)
in_nd_gif = in_gif.replace(".gif", "_nd.gif")
if nd_bands is not None:
add_text_to_gif(
in_nd_gif,
in_nd_gif,
xy=("2%", "2%"),
text_sequence=start_year,
font_size=font_size,
font_color=font_color,
duration=int(1000 / frames_per_second),
add_progress_bar=add_progress_bar,
progress_bar_color=progress_bar_color,
progress_bar_height=progress_bar_height,
)
if label is not None:
add_text_to_gif(
in_gif,
in_gif,
xy=("2%", "90%"),
text_sequence=label,
font_size=font_size,
font_color=font_color,
duration=int(1000 / frames_per_second),
add_progress_bar=add_progress_bar,
progress_bar_color=progress_bar_color,
progress_bar_height=progress_bar_height,
)
# if nd_bands is not None:
# add_text_to_gif(in_nd_gif, in_nd_gif, xy=('2%', '90%'), text_sequence=label,
# font_size=font_size, font_color=font_color, duration=int(1000 / frames_per_second), add_progress_bar=add_progress_bar, progress_bar_color=progress_bar_color, progress_bar_height=progress_bar_height)
if is_tool("ffmpeg"):
reduce_gif_size(in_gif)
if nd_bands is not None:
reduce_gif_size(in_nd_gif)
print("Adding GIF to the map ...")
self.image_overlay(url=in_gif, bounds=bounds, name=layer_name)
if nd_bands is not None:
self.image_overlay(
url=in_nd_gif, bounds=bounds, name=layer_name + " ND"
)
print("The timelapse has been added to the map.")
if download:
link = create_download_link(
in_gif,
title="Click here to download the Landsat timelapse: ",
)
display(link)
if nd_bands is not None:
link2 = create_download_link(
in_nd_gif,
title="Click here to download the Normalized Difference Index timelapse: ",
)
display(link2)
except Exception as e:
raise Exception(e)
add_layer_control(self, position='topright')
¶
Adds a layer control to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
position |
str |
description. Defaults to "topright". |
'topright' |
Source code in geemap/geemap.py
def add_layer_control(self, position="topright"):
"""Adds a layer control to the map.
Args:
position (str, optional): _description_. Defaults to "topright".
"""
if self.layer_control is None:
layer_control = ipyleaflet.LayersControl(position=position)
self.add(layer_control)
add_layer_manager(self, position='topright', opened=True, show_close_button=True)
¶
Add the Layer Manager to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
position |
str |
The position of the Layer Manager. Defaults to "topright". |
'topright' |
opened |
bool |
Whether the control is opened. Defaults to True. |
True |
show_close_button |
bool |
Whether to show the close button. Defaults to True. |
True |
Source code in geemap/geemap.py
def add_layer_manager(
self, position="topright", opened=True, show_close_button=True
):
"""Add the Layer Manager to the map.
Args:
position (str, optional): The position of the Layer Manager. Defaults to "topright".
opened (bool, optional): Whether the control is opened. Defaults to True.
show_close_button (bool, optional): Whether to show the close button. Defaults to True.
"""
from .toolbar import layer_manager_gui
layer_manager_gui(self, position, opened, show_close_button=show_close_button)
add_legend(self, title='Legend', legend_dict=None, labels=None, colors=None, position='bottomright', builtin_legend=None, layer_name=None, add_header=True, widget_args={}, **kwargs)
¶
Adds a customized basemap to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
title |
str |
Title of the legend. Defaults to 'Legend'. |
'Legend' |
legend_dict |
dict |
A dictionary containing legend items as keys and color as values. If provided, legend_keys and legend_colors will be ignored. Defaults to None. |
None |
labels |
list |
A list of legend keys. Defaults to None. |
None |
colors |
list |
A list of legend colors. Defaults to None. |
None |
position |
str |
Position of the legend. Defaults to 'bottomright'. |
'bottomright' |
builtin_legend |
str |
Name of the builtin legend to add to the map. Defaults to None. |
None |
layer_name |
str |
Layer name of the legend to be associated with. Defaults to None. |
None |
add_header |
bool |
Whether the legend can be closed or not. Defaults to True. |
True |
widget_args |
dict |
Additional arguments passed to the widget_template() function. Defaults to {}. |
{} |
Source code in geemap/geemap.py
def add_legend(
self,
title="Legend",
legend_dict=None,
labels=None,
colors=None,
position="bottomright",
builtin_legend=None,
layer_name=None,
add_header=True,
widget_args={},
**kwargs,
):
"""Adds a customized basemap to the map.
Args:
title (str, optional): Title of the legend. Defaults to 'Legend'.
legend_dict (dict, optional): A dictionary containing legend items as keys and color as values. If provided, legend_keys and legend_colors will be ignored. Defaults to None.
labels (list, optional): A list of legend keys. Defaults to None.
colors (list, optional): A list of legend colors. Defaults to None.
position (str, optional): Position of the legend. Defaults to 'bottomright'.
builtin_legend (str, optional): Name of the builtin legend to add to the map. Defaults to None.
layer_name (str, optional): Layer name of the legend to be associated with. Defaults to None.
add_header (bool, optional): Whether the legend can be closed or not. Defaults to True.
widget_args (dict, optional): Additional arguments passed to the widget_template() function. Defaults to {}.
"""
from IPython.display import display
import pkg_resources
from .legends import builtin_legends
pkg_dir = os.path.dirname(
pkg_resources.resource_filename("geemap", "geemap.py")
)
legend_template = os.path.join(pkg_dir, "data/template/legend.html")
if "min_width" not in kwargs:
min_width = None
if "max_width" not in kwargs:
max_width = "300px"
else:
max_width = kwargs["max_width"]
if "min_height" not in kwargs:
min_height = None
else:
min_height = kwargs["min_height"]
if "max_height" not in kwargs:
max_height = None
else:
max_height = kwargs["max_height"]
if "height" not in kwargs:
height = None
else:
height = kwargs["height"]
if "width" not in kwargs:
width = None
else:
width = kwargs["width"]
if width is None:
max_width = "300px"
if height is None:
max_height = "400px"
if not os.path.exists(legend_template):
print("The legend template does not exist.")
return
if labels is not None:
if not isinstance(labels, list):
print("The legend keys must be a list.")
return
else:
labels = ["One", "Two", "Three", "Four", "etc"]
if colors is not None:
if not isinstance(colors, list):
print("The legend colors must be a list.")
return
elif all(isinstance(item, tuple) for item in colors):
try:
colors = [rgb_to_hex(x) for x in colors]
except Exception as e:
print(e)
elif all((item.startswith("#") and len(item) == 7) for item in colors):
pass
elif all((len(item) == 6) for item in colors):
pass
else:
print("The legend colors must be a list of tuples.")
return
else:
colors = [
"#8DD3C7",
"#FFFFB3",
"#BEBADA",
"#FB8072",
"#80B1D3",
]
if len(labels) != len(colors):
print("The legend keys and values must be the same length.")
return
allowed_builtin_legends = builtin_legends.keys()
if builtin_legend is not None:
if builtin_legend not in allowed_builtin_legends:
print(
"The builtin legend must be one of the following: {}".format(
", ".join(allowed_builtin_legends)
)
)
return
else:
legend_dict = builtin_legends[builtin_legend]
labels = list(legend_dict.keys())
colors = list(legend_dict.values())
if legend_dict is not None:
if not isinstance(legend_dict, dict):
print("The legend dict must be a dictionary.")
return
else:
labels = list(legend_dict.keys())
colors = list(legend_dict.values())
if all(isinstance(item, tuple) for item in colors):
try:
colors = [rgb_to_hex(x) for x in colors]
except Exception as e:
print(e)
allowed_positions = [
"topleft",
"topright",
"bottomleft",
"bottomright",
]
if position not in allowed_positions:
print(
"The position must be one of the following: {}".format(
", ".join(allowed_positions)
)
)
return
header = []
content = []
footer = []
with open(legend_template) as f:
lines = f.readlines()
lines[3] = lines[3].replace("Legend", title)
header = lines[:6]
footer = lines[11:]
for index, key in enumerate(labels):
color = colors[index]
if not color.startswith("#"):
color = "#" + color
item = " <li><span style='background:{};'></span>{}</li>\n".format(
color, key
)
content.append(item)
legend_html = header + content + footer
legend_text = "".join(legend_html)
try:
legend_output = widgets.Output(
layout={
# "border": "1px solid black",
"max_width": max_width,
"min_width": min_width,
"max_height": max_height,
"min_height": min_height,
"height": height,
"width": width,
"overflow": "scroll",
}
)
legend_widget = widgets.HTML(value=legend_text)
if add_header:
if "show_close_button" not in widget_args:
widget_args["show_close_button"] = False
if "widget_icon" not in widget_args:
widget_args["widget_icon"] = "bars"
legend_output_widget = widget_template(
legend_output,
position=position,
display_widget=legend_widget,
**widget_args,
)
else:
legend_output_widget = legend_output
legend_control = ipyleaflet.WidgetControl(
widget=legend_output_widget, position=position
)
# legend_output.append_display_data(legend_widget)
legend_output.clear_output()
with legend_output:
display(legend_widget)
self._legend_widget = legend_output_widget
self._legend = legend_control
self.add(legend_control)
if not hasattr(self, "legends"):
setattr(self, "legends", [legend_control])
else:
self.legends.append(legend_control)
if layer_name in self.ee_layer_names:
self.ee_layer_dict[layer_name]["legend"] = legend_control
except Exception as e:
raise Exception(e)
add_local_tile(self, source, band=None, palette=None, vmin=None, vmax=None, nodata=None, attribution=None, layer_name='Local COG', zoom_to_layer=True, **kwargs)
¶
Add a local raster dataset to the map.
If you are using this function in JupyterHub on a remote server (e.g., Binder, Microsoft Planetary Computer) and
if the raster does not render properly, try installing jupyter-server-proxy using pip install jupyter-server-proxy
,
then running the following code before calling this function. For more info, see https://bit.ly/3JbmF93.
1 2 |
|
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source |
str |
The path to the GeoTIFF file or the URL of the Cloud Optimized GeoTIFF. |
required |
band |
int |
The band to use. Band indexing starts at 1. Defaults to None. |
None |
palette |
str |
The name of the color palette from |
None |
vmin |
float |
The minimum value to use when colormapping the palette when plotting a single band. Defaults to None. |
None |
vmax |
float |
The maximum value to use when colormapping the palette when plotting a single band. Defaults to None. |
None |
nodata |
float |
The value from the band to use to interpret as not valid data. Defaults to None. |
None |
attribution |
str |
Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None. |
None |
layer_name |
str |
The layer name to use. Defaults to 'Local COG'. |
'Local COG' |
zoom_to_layer |
bool |
Whether to zoom to the extent of the layer. Defaults to True. |
True |
Source code in geemap/geemap.py
def add_raster(
self,
source,
band=None,
palette=None,
vmin=None,
vmax=None,
nodata=None,
attribution=None,
layer_name="Local COG",
zoom_to_layer=True,
**kwargs,
):
"""Add a local raster dataset to the map.
If you are using this function in JupyterHub on a remote server (e.g., Binder, Microsoft Planetary Computer) and
if the raster does not render properly, try installing jupyter-server-proxy using `pip install jupyter-server-proxy`,
then running the following code before calling this function. For more info, see https://bit.ly/3JbmF93.
import os
os.environ['LOCALTILESERVER_CLIENT_PREFIX'] = 'proxy/{port}'
Args:
source (str): The path to the GeoTIFF file or the URL of the Cloud Optimized GeoTIFF.
band (int, optional): The band to use. Band indexing starts at 1. Defaults to None.
palette (str, optional): The name of the color palette from `palettable` to use when plotting a single band. See https://jiffyclub.github.io/palettable. Default is greyscale
vmin (float, optional): The minimum value to use when colormapping the palette when plotting a single band. Defaults to None.
vmax (float, optional): The maximum value to use when colormapping the palette when plotting a single band. Defaults to None.
nodata (float, optional): The value from the band to use to interpret as not valid data. Defaults to None.
attribution (str, optional): Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.
layer_name (str, optional): The layer name to use. Defaults to 'Local COG'.
zoom_to_layer (bool, optional): Whether to zoom to the extent of the layer. Defaults to True.
"""
tile_layer, tile_client = get_local_tile_layer(
source,
band=band,
palette=palette,
vmin=vmin,
vmax=vmax,
nodata=nodata,
attribution=attribution,
layer_name=layer_name,
return_client=True,
**kwargs,
)
self.add(tile_layer)
bounds = tile_client.bounds() # [ymin, ymax, xmin, xmax]
bounds = (
bounds[2],
bounds[0],
bounds[3],
bounds[1],
) # [minx, miny, maxx, maxy]
if zoom_to_layer:
self.zoom_to_bounds(bounds)
arc_add_layer(tile_layer.url, layer_name, True, 1.0)
if zoom_to_layer:
arc_zoom_to_extent(bounds[0], bounds[1], bounds[2], bounds[3])
if not hasattr(self, "cog_layer_dict"):
self.cog_layer_dict = {}
band_names = list(tile_client.metadata()["bands"].keys())
params = {
"tile_layer": tile_layer,
"tile_client": tile_client,
"band": band,
"band_names": band_names,
"bounds": bounds,
"type": "LOCAL",
}
self.cog_layer_dict[layer_name] = params
add_marker(self, location, **kwargs)
¶
Adds a marker to the map. More info about marker at https://ipyleaflet.readthedocs.io/en/latest/api_reference/marker.html.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
location |
list | tuple |
The location of the marker in the format of [lat, lng]. |
required |
**kwargs |
Keyword arguments for the marker. |
{} |
Source code in geemap/geemap.py
def add_marker(self, location, **kwargs):
"""Adds a marker to the map. More info about marker at https://ipyleaflet.readthedocs.io/en/latest/api_reference/marker.html.
Args:
location (list | tuple): The location of the marker in the format of [lat, lng].
**kwargs: Keyword arguments for the marker.
"""
if isinstance(location, list):
location = tuple(location)
if isinstance(location, tuple):
marker = ipyleaflet.Marker(location=location, **kwargs)
self.add(marker)
else:
raise TypeError("The location must be a list or a tuple.")
add_marker_cluster(self, event='click', add_marker=True)
¶
Captures user inputs and add markers to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
event |
str |
[description]. Defaults to 'click'. |
'click' |
add_marker |
bool |
If True, add markers to the map. Defaults to True. |
True |
Returns:
Type | Description |
---|---|
object |
a marker cluster. |
Source code in geemap/geemap.py
def add_marker_cluster(self, event="click", add_marker=True):
"""Captures user inputs and add markers to the map.
Args:
event (str, optional): [description]. Defaults to 'click'.
add_marker (bool, optional): If True, add markers to the map. Defaults to True.
Returns:
object: a marker cluster.
"""
coordinates = []
markers = []
marker_cluster = ipyleaflet.MarkerCluster(name="Marker Cluster")
self.last_click = []
self.all_clicks = []
if add_marker:
self.add(marker_cluster)
def handle_interaction(**kwargs):
latlon = kwargs.get("coordinates")
if event == "click" and kwargs.get("type") == "click":
coordinates.append(latlon)
self.last_click = latlon
self.all_clicks = coordinates
if add_marker:
markers.append(ipyleaflet.Marker(location=latlon))
marker_cluster.markers = markers
elif kwargs.get("type") == "mousemove":
pass
# cursor style: https://www.w3schools.com/cssref/pr_class_cursor.asp
self.default_style = {"cursor": "crosshair"}
self.on_interaction(handle_interaction)
add_minimap(self, zoom=5, position='bottomright')
¶
Adds a minimap (overview) to the ipyleaflet map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
zoom |
int |
Initial map zoom level. Defaults to 5. |
5 |
position |
str |
Position of the minimap. Defaults to "bottomright". |
'bottomright' |
Source code in geemap/geemap.py
def add_minimap(self, zoom=5, position="bottomright"):
"""Adds a minimap (overview) to the ipyleaflet map.
Args:
zoom (int, optional): Initial map zoom level. Defaults to 5.
position (str, optional): Position of the minimap. Defaults to "bottomright".
"""
minimap = ipyleaflet.Map(
zoom_control=False,
attribution_control=False,
zoom=zoom,
center=self.center,
layers=[get_basemap("ROADMAP")],
)
minimap.layout.width = "150px"
minimap.layout.height = "150px"
ipyleaflet.link((minimap, "center"), (self, "center"))
minimap_control = ipyleaflet.WidgetControl(widget=minimap, position=position)
self.add(minimap_control)
add_netcdf(self, filename, variables=None, palette=None, vmin=None, vmax=None, nodata=None, attribution=None, layer_name='NetCDF layer', shift_lon=True, lat='lat', lon='lon', **kwargs)
¶
Generate an ipyleaflet/folium TileLayer from a netCDF file. If you are using this function in JupyterHub on a remote server (e.g., Binder, Microsoft Planetary Computer), try adding to following two lines to the beginning of the notebook if the raster does not render properly.
1 2 |
|
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename |
str |
File path or HTTP URL to the netCDF file. |
required |
variables |
int |
The variable/band names to extract data from the netCDF file. Defaults to None. If None, all variables will be extracted. |
None |
port |
str |
The port to use for the server. Defaults to "default". |
required |
palette |
str |
The name of the color palette from |
None |
vmin |
float |
The minimum value to use when colormapping the palette when plotting a single band. Defaults to None. |
None |
vmax |
float |
The maximum value to use when colormapping the palette when plotting a single band. Defaults to None. |
None |
nodata |
float |
The value from the band to use to interpret as not valid data. Defaults to None. |
None |
attribution |
str |
Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None. |
None |
layer_name |
str |
The layer name to use. Defaults to "netCDF layer". |
'NetCDF layer' |
shift_lon |
bool |
Flag to shift longitude values from [0, 360] to the range [-180, 180]. Defaults to True. |
True |
lat |
str |
Name of the latitude variable. Defaults to 'lat'. |
'lat' |
lon |
str |
Name of the longitude variable. Defaults to 'lon'. |
'lon' |
Source code in geemap/geemap.py
def add_netcdf(
self,
filename,
variables=None,
palette=None,
vmin=None,
vmax=None,
nodata=None,
attribution=None,
layer_name="NetCDF layer",
shift_lon=True,
lat="lat",
lon="lon",
**kwargs,
):
"""Generate an ipyleaflet/folium TileLayer from a netCDF file.
If you are using this function in JupyterHub on a remote server (e.g., Binder, Microsoft Planetary Computer),
try adding to following two lines to the beginning of the notebook if the raster does not render properly.
import os
os.environ['LOCALTILESERVER_CLIENT_PREFIX'] = f'{os.environ['JUPYTERHUB_SERVICE_PREFIX'].lstrip('/')}/proxy/{{port}}'
Args:
filename (str): File path or HTTP URL to the netCDF file.
variables (int, optional): The variable/band names to extract data from the netCDF file. Defaults to None. If None, all variables will be extracted.
port (str, optional): The port to use for the server. Defaults to "default".
palette (str, optional): The name of the color palette from `palettable` to use when plotting a single band. See https://jiffyclub.github.io/palettable. Default is greyscale
vmin (float, optional): The minimum value to use when colormapping the palette when plotting a single band. Defaults to None.
vmax (float, optional): The maximum value to use when colormapping the palette when plotting a single band. Defaults to None.
nodata (float, optional): The value from the band to use to interpret as not valid data. Defaults to None.
attribution (str, optional): Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.
layer_name (str, optional): The layer name to use. Defaults to "netCDF layer".
shift_lon (bool, optional): Flag to shift longitude values from [0, 360] to the range [-180, 180]. Defaults to True.
lat (str, optional): Name of the latitude variable. Defaults to 'lat'.
lon (str, optional): Name of the longitude variable. Defaults to 'lon'.
"""
tif, vars = netcdf_to_tif(
filename, shift_lon=shift_lon, lat=lat, lon=lon, return_vars=True
)
if variables is None:
if len(vars) >= 3:
band_idx = [1, 2, 3]
else:
band_idx = [1]
else:
if not set(variables).issubset(set(vars)):
raise ValueError(f"The variables must be a subset of {vars}.")
else:
band_idx = [vars.index(v) + 1 for v in variables]
self.add_raster(
tif,
band=band_idx,
palette=palette,
vmin=vmin,
vmax=vmax,
nodata=nodata,
attribution=attribution,
layer_name=layer_name,
**kwargs,
)
add_osm(self, query, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover', which_result=None, by_osmid=False, buffer_dist=None, to_ee=False, geodesic=True)
¶
Adds OSM data to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
str | dict | list |
Query string(s) or structured dict(s) to geocode. |
required |
layer_name |
str |
The layer name to be used.. Defaults to "Untitled". |
'Untitled' |
style |
dict |
A dictionary specifying the style to be used. Defaults to {}. |
{} |
hover_style |
dict |
Hover style dictionary. Defaults to {}. |
{} |
style_callback |
function |
Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None. |
None |
fill_colors |
list |
The random colors to use for filling polygons. Defaults to ["black"]. |
['black'] |
info_mode |
str |
Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover". |
'on_hover' |
which_result |
INT |
Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None. |
None |
by_osmid |
bool |
If True, handle query as an OSM ID for lookup rather than text search. Defaults to False. |
False |
buffer_dist |
float |
Distance to buffer around the place geometry, in meters. Defaults to None. |
None |
to_ee |
bool |
Whether to convert the csv to an ee.FeatureCollection. |
False |
geodesic |
bool |
Whether line segments should be interpreted as spherical geodesics. If false, indicates that line segments should be interpreted as planar lines in the specified CRS. If absent, defaults to true if the CRS is geographic (including the default EPSG:4326), or to false if the CRS is projected. |
True |
Source code in geemap/geemap.py
def add_osm(
self,
query,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
which_result=None,
by_osmid=False,
buffer_dist=None,
to_ee=False,
geodesic=True,
):
"""Adds OSM data to the map.
Args:
query (str | dict | list): Query string(s) or structured dict(s) to geocode.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
which_result (INT, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
by_osmid (bool, optional): If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.
buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.
to_ee (bool, optional): Whether to convert the csv to an ee.FeatureCollection.
geodesic (bool, optional): Whether line segments should be interpreted as spherical geodesics. If false, indicates that line segments should be interpreted as planar lines in the specified CRS. If absent, defaults to true if the CRS is geographic (including the default EPSG:4326), or to false if the CRS is projected.
"""
gdf = osm_to_gdf(
query, which_result=which_result, by_osmid=by_osmid, buffer_dist=buffer_dist
)
geojson = gdf.__geo_interface__
if to_ee:
fc = geojson_to_ee(geojson, geodesic=geodesic)
self.addLayer(fc, {}, layer_name)
self.zoomToObject(fc)
else:
self.add_geojson(
geojson,
layer_name=layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
fill_colors=fill_colors,
info_mode=info_mode,
)
bounds = gdf.bounds.iloc[0]
self.fit_bounds([[bounds[1], bounds[0]], [bounds[3], bounds[2]]])
add_osm_from_address(self, address, tags, dist=1000, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover')
¶
Adds OSM entities within some distance N, S, E, W of address to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
address |
str |
The address to geocode and use as the central point around which to get the geometries. |
required |
tags |
dict |
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
dist |
int |
Distance in meters. Defaults to 1000. |
1000 |
layer_name |
str |
The layer name to be used.. Defaults to "Untitled". |
'Untitled' |
style |
dict |
A dictionary specifying the style to be used. Defaults to {}. |
{} |
hover_style |
dict |
Hover style dictionary. Defaults to {}. |
{} |
style_callback |
function |
Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None. |
None |
fill_colors |
list |
The random colors to use for filling polygons. Defaults to ["black"]. |
['black'] |
info_mode |
str |
Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover". |
'on_hover' |
Source code in geemap/geemap.py
def add_osm_from_address(
self,
address,
tags,
dist=1000,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
):
"""Adds OSM entities within some distance N, S, E, W of address to the map.
Args:
address (str): The address to geocode and use as the central point around which to get the geometries.
tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
dist (int, optional): Distance in meters. Defaults to 1000.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
"""
from .osm import osm_gdf_from_address
gdf = osm_gdf_from_address(address, tags, dist)
geojson = gdf.__geo_interface__
self.add_geojson(
geojson,
layer_name=layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
fill_colors=fill_colors,
info_mode=info_mode,
)
self.zoom_to_gdf(gdf)
add_osm_from_bbox(self, north, south, east, west, tags, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover')
¶
Adds OSM entities within a N, S, E, W bounding box to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
north |
float |
Northern latitude of bounding box. |
required |
south |
float |
Southern latitude of bounding box. |
required |
east |
float |
Eastern longitude of bounding box. |
required |
west |
float |
Western longitude of bounding box. |
required |
tags |
dict |
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
layer_name |
str |
The layer name to be used.. Defaults to "Untitled". |
'Untitled' |
style |
dict |
A dictionary specifying the style to be used. Defaults to {}. |
{} |
hover_style |
dict |
Hover style dictionary. Defaults to {}. |
{} |
style_callback |
function |
Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None. |
None |
fill_colors |
list |
The random colors to use for filling polygons. Defaults to ["black"]. |
['black'] |
info_mode |
str |
Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover". |
'on_hover' |
Source code in geemap/geemap.py
def add_osm_from_bbox(
self,
north,
south,
east,
west,
tags,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
):
"""Adds OSM entities within a N, S, E, W bounding box to the map.
Args:
north (float): Northern latitude of bounding box.
south (float): Southern latitude of bounding box.
east (float): Eastern longitude of bounding box.
west (float): Western longitude of bounding box.
tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
"""
from .osm import osm_gdf_from_bbox
gdf = osm_gdf_from_bbox(north, south, east, west, tags)
geojson = gdf.__geo_interface__
self.add_geojson(
geojson,
layer_name=layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
fill_colors=fill_colors,
info_mode=info_mode,
)
self.zoom_to_gdf(gdf)
add_osm_from_geocode(self, query, which_result=None, by_osmid=False, buffer_dist=None, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover')
¶
Adds OSM data of place(s) by name or ID to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
str | dict | list |
Query string(s) or structured dict(s) to geocode. |
required |
which_result |
int |
Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None. |
None |
by_osmid |
bool |
If True, handle query as an OSM ID for lookup rather than text search. Defaults to False. |
False |
buffer_dist |
float |
Distance to buffer around the place geometry, in meters. Defaults to None. |
None |
layer_name |
str |
The layer name to be used.. Defaults to "Untitled". |
'Untitled' |
style |
dict |
A dictionary specifying the style to be used. Defaults to {}. |
{} |
hover_style |
dict |
Hover style dictionary. Defaults to {}. |
{} |
style_callback |
function |
Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None. |
None |
fill_colors |
list |
The random colors to use for filling polygons. Defaults to ["black"]. |
['black'] |
info_mode |
str |
Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover". |
'on_hover' |
Source code in geemap/geemap.py
def add_osm_from_geocode(
self,
query,
which_result=None,
by_osmid=False,
buffer_dist=None,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
):
"""Adds OSM data of place(s) by name or ID to the map.
Args:
query (str | dict | list): Query string(s) or structured dict(s) to geocode.
which_result (int, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
by_osmid (bool, optional): If True, handle query as an OSM ID for lookup rather than text search. Defaults to False.
buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
"""
from .osm import osm_gdf_from_geocode
gdf = osm_gdf_from_geocode(
query, which_result=which_result, by_osmid=by_osmid, buffer_dist=buffer_dist
)
geojson = gdf.__geo_interface__
self.add_geojson(
geojson,
layer_name=layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
fill_colors=fill_colors,
info_mode=info_mode,
)
self.zoom_to_gdf(gdf)
add_osm_from_place(self, query, tags, which_result=None, buffer_dist=None, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover')
¶
Adds OSM entities within boundaries of geocodable place(s) to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
query |
str | dict | list |
Query string(s) or structured dict(s) to geocode. |
required |
tags |
dict |
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
which_result |
int |
Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None. |
None |
buffer_dist |
float |
Distance to buffer around the place geometry, in meters. Defaults to None. |
None |
layer_name |
str |
The layer name to be used.. Defaults to "Untitled". |
'Untitled' |
style |
dict |
A dictionary specifying the style to be used. Defaults to {}. |
{} |
hover_style |
dict |
Hover style dictionary. Defaults to {}. |
{} |
style_callback |
function |
Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None. |
None |
fill_colors |
list |
The random colors to use for filling polygons. Defaults to ["black"]. |
['black'] |
info_mode |
str |
Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover". |
'on_hover' |
Source code in geemap/geemap.py
def add_osm_from_place(
self,
query,
tags,
which_result=None,
buffer_dist=None,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
):
"""Adds OSM entities within boundaries of geocodable place(s) to the map.
Args:
query (str | dict | list): Query string(s) or structured dict(s) to geocode.
tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
which_result (int, optional): Which geocoding result to use. if None, auto-select the first (Multi)Polygon or raise an error if OSM doesn't return one. to get the top match regardless of geometry type, set which_result=1. Defaults to None.
buffer_dist (float, optional): Distance to buffer around the place geometry, in meters. Defaults to None.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
"""
from .osm import osm_gdf_from_place
gdf = osm_gdf_from_place(query, tags, which_result, buffer_dist)
geojson = gdf.__geo_interface__
self.add_geojson(
geojson,
layer_name=layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
fill_colors=fill_colors,
info_mode=info_mode,
)
self.zoom_to_gdf(gdf)
add_osm_from_point(self, center_point, tags, dist=1000, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover')
¶
Adds OSM entities within some distance N, S, E, W of a point to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
center_point |
tuple |
The (lat, lng) center point around which to get the geometries. |
required |
tags |
dict |
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
dist |
int |
Distance in meters. Defaults to 1000. |
1000 |
layer_name |
str |
The layer name to be used.. Defaults to "Untitled". |
'Untitled' |
style |
dict |
A dictionary specifying the style to be used. Defaults to {}. |
{} |
hover_style |
dict |
Hover style dictionary. Defaults to {}. |
{} |
style_callback |
function |
Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None. |
None |
fill_colors |
list |
The random colors to use for filling polygons. Defaults to ["black"]. |
['black'] |
info_mode |
str |
Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover". |
'on_hover' |
Source code in geemap/geemap.py
def add_osm_from_point(
self,
center_point,
tags,
dist=1000,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
):
"""Adds OSM entities within some distance N, S, E, W of a point to the map.
Args:
center_point (tuple): The (lat, lng) center point around which to get the geometries.
tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
dist (int, optional): Distance in meters. Defaults to 1000.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
"""
from .osm import osm_gdf_from_point
gdf = osm_gdf_from_point(center_point, tags, dist)
geojson = gdf.__geo_interface__
self.add_geojson(
geojson,
layer_name=layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
fill_colors=fill_colors,
info_mode=info_mode,
)
self.zoom_to_gdf(gdf)
add_osm_from_polygon(self, polygon, tags, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover')
¶
Adds OSM entities within boundaries of a (multi)polygon to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
polygon |
shapely.geometry.Polygon | shapely.geometry.MultiPolygon |
Geographic boundaries to fetch geometries within |
required |
tags |
dict |
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
layer_name |
str |
The layer name to be used.. Defaults to "Untitled". |
'Untitled' |
style |
dict |
A dictionary specifying the style to be used. Defaults to {}. |
{} |
hover_style |
dict |
Hover style dictionary. Defaults to {}. |
{} |
style_callback |
function |
Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None. |
None |
fill_colors |
list |
The random colors to use for filling polygons. Defaults to ["black"]. |
['black'] |
info_mode |
str |
Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover". |
'on_hover' |
Source code in geemap/geemap.py
def add_osm_from_polygon(
self,
polygon,
tags,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
):
"""Adds OSM entities within boundaries of a (multi)polygon to the map.
Args:
polygon (shapely.geometry.Polygon | shapely.geometry.MultiPolygon): Geographic boundaries to fetch geometries within
tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
"""
from .osm import osm_gdf_from_polygon
gdf = osm_gdf_from_polygon(polygon, tags)
geojson = gdf.__geo_interface__
self.add_geojson(
geojson,
layer_name=layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
fill_colors=fill_colors,
info_mode=info_mode,
)
self.zoom_to_gdf(gdf)
add_osm_from_view(self, tags, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover')
¶
Adds OSM entities within the current map view to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tags |
dict |
Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop. |
required |
layer_name |
str |
The layer name to be used.. Defaults to "Untitled". |
'Untitled' |
style |
dict |
A dictionary specifying the style to be used. Defaults to {}. |
{} |
hover_style |
dict |
Hover style dictionary. Defaults to {}. |
{} |
style_callback |
function |
Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None. |
None |
fill_colors |
list |
The random colors to use for filling polygons. Defaults to ["black"]. |
['black'] |
info_mode |
str |
Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover". |
'on_hover' |
Source code in geemap/geemap.py
def add_osm_from_view(
self,
tags,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
):
"""Adds OSM entities within the current map view to the map.
Args:
tags (dict): Dict of tags used for finding objects in the selected area. Results returned are the union, not intersection of each individual tag. Each result matches at least one given tag. The dict keys should be OSM tags, (e.g., building, landuse, highway, etc) and the dict values should be either True to retrieve all items with the given tag, or a string to get a single tag-value combination, or a list of strings to get multiple values for the given tag. For example, tags = {‘building’: True} would return all building footprints in the area. tags = {‘amenity’:True, ‘landuse’:[‘retail’,’commercial’], ‘highway’:’bus_stop’} would return all amenities, landuse=retail, landuse=commercial, and highway=bus_stop.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
"""
from .osm import osm_gdf_from_bbox
bounds = self.bounds
if len(bounds) == 0:
bounds = (
(40.74824858675827, -73.98933637940563),
(40.75068694343106, -73.98364473187601),
)
north, south, east, west = (
bounds[1][0],
bounds[0][0],
bounds[1][1],
bounds[0][1],
)
gdf = osm_gdf_from_bbox(north, south, east, west, tags)
geojson = gdf.__geo_interface__
self.add_geojson(
geojson,
layer_name=layer_name,
style=style,
hover_style=hover_style,
style_callback=style_callback,
fill_colors=fill_colors,
info_mode=info_mode,
)
self.zoom_to_gdf(gdf)
add_planet_by_month(self, year=2016, month=1, name=None, api_key=None, token_name='PLANET_API_KEY')
¶
Adds a Planet global mosaic by month to the map. To get a Planet API key, see https://developers.planet.com/quickstart/apis
Parameters:
Name | Type | Description | Default |
---|---|---|---|
year |
int |
The year of Planet global mosaic, must be >=2016. Defaults to 2016. |
2016 |
month |
int |
The month of Planet global mosaic, must be 1-12. Defaults to 1. |
1 |
name |
str |
The layer name to use. Defaults to None. |
None |
api_key |
str |
The Planet API key. Defaults to None. |
None |
token_name |
str |
The environment variable name of the API key. Defaults to "PLANET_API_KEY". |
'PLANET_API_KEY' |
Source code in geemap/geemap.py
def add_planet_by_month(
self, year=2016, month=1, name=None, api_key=None, token_name="PLANET_API_KEY"
):
"""Adds a Planet global mosaic by month to the map. To get a Planet API key, see https://developers.planet.com/quickstart/apis
Args:
year (int, optional): The year of Planet global mosaic, must be >=2016. Defaults to 2016.
month (int, optional): The month of Planet global mosaic, must be 1-12. Defaults to 1.
name (str, optional): The layer name to use. Defaults to None.
api_key (str, optional): The Planet API key. Defaults to None.
token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".
"""
layer = planet_tile_by_month(year, month, name, api_key, token_name)
self.add(layer)
add_planet_by_quarter(self, year=2016, quarter=1, name=None, api_key=None, token_name='PLANET_API_KEY')
¶
Adds a Planet global mosaic by quarter to the map. To get a Planet API key, see https://developers.planet.com/quickstart/apis
Parameters:
Name | Type | Description | Default |
---|---|---|---|
year |
int |
The year of Planet global mosaic, must be >=2016. Defaults to 2016. |
2016 |
quarter |
int |
The quarter of Planet global mosaic, must be 1-12. Defaults to 1. |
1 |
name |
str |
The layer name to use. Defaults to None. |
None |
api_key |
str |
The Planet API key. Defaults to None. |
None |
token_name |
str |
The environment variable name of the API key. Defaults to "PLANET_API_KEY". |
'PLANET_API_KEY' |
Source code in geemap/geemap.py
def add_planet_by_quarter(
self, year=2016, quarter=1, name=None, api_key=None, token_name="PLANET_API_KEY"
):
"""Adds a Planet global mosaic by quarter to the map. To get a Planet API key, see https://developers.planet.com/quickstart/apis
Args:
year (int, optional): The year of Planet global mosaic, must be >=2016. Defaults to 2016.
quarter (int, optional): The quarter of Planet global mosaic, must be 1-12. Defaults to 1.
name (str, optional): The layer name to use. Defaults to None.
api_key (str, optional): The Planet API key. Defaults to None.
token_name (str, optional): The environment variable name of the API key. Defaults to "PLANET_API_KEY".
"""
layer = planet_tile_by_quarter(year, quarter, name, api_key, token_name)
self.add(layer)
add_plot_gui(self, position='topright', **kwargs)
¶
Adds the plot widget to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
position |
str |
Position of the widget. Defaults to "topright". |
'topright' |
Source code in geemap/geemap.py
def add_plot_gui(self, position="topright", **kwargs):
"""Adds the plot widget to the map.
Args:
position (str, optional): Position of the widget. Defaults to "topright".
"""
from .toolbar import ee_plot_gui
ee_plot_gui(self, position, **kwargs)
add_point_layer(self, filename, popup=None, layer_name='Marker Cluster', **kwargs)
¶
Adds a point layer to the map with a popup attribute.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename |
str |
str, http url, path object or file-like object. Either the absolute or relative path to the file or URL to be opened, or any object with a read() method (such as an open file or StringIO) |
required |
popup |
str | list |
Column name(s) to be used for popup. Defaults to None. |
None |
layer_name |
str |
A layer name to use. Defaults to "Marker Cluster". |
'Marker Cluster' |
Exceptions:
Type | Description |
---|---|
ValueError |
If the specified column name does not exist. |
ValueError |
If the specified column names do not exist. |
Source code in geemap/geemap.py
def add_point_layer(
self, filename, popup=None, layer_name="Marker Cluster", **kwargs
):
"""Adds a point layer to the map with a popup attribute.
Args:
filename (str): str, http url, path object or file-like object. Either the absolute or relative path to the file or URL to be opened, or any object with a read() method (such as an open file or StringIO)
popup (str | list, optional): Column name(s) to be used for popup. Defaults to None.
layer_name (str, optional): A layer name to use. Defaults to "Marker Cluster".
Raises:
ValueError: If the specified column name does not exist.
ValueError: If the specified column names do not exist.
"""
import warnings
warnings.filterwarnings("ignore")
check_package(name="geopandas", URL="https://geopandas.org")
import geopandas as gpd
self.default_style = {"cursor": "wait"}
if not filename.startswith("http"):
filename = os.path.abspath(filename)
ext = os.path.splitext(filename)[1].lower()
if ext == ".kml":
gpd.io.file.fiona.drvsupport.supported_drivers["KML"] = "rw"
gdf = gpd.read_file(filename, driver="KML", **kwargs)
else:
gdf = gpd.read_file(filename, **kwargs)
df = gdf.to_crs(epsg="4326")
col_names = df.columns.values.tolist()
if popup is not None:
if isinstance(popup, str) and (popup not in col_names):
raise ValueError(
f"popup must be one of the following: {', '.join(col_names)}"
)
elif isinstance(popup, list) and (
not all(item in col_names for item in popup)
):
raise ValueError(
f"All popup items must be select from: {', '.join(col_names)}"
)
df["x"] = df.geometry.x
df["y"] = df.geometry.y
points = list(zip(df["y"], df["x"]))
if popup is not None:
if isinstance(popup, str):
labels = df[popup]
markers = [
ipyleaflet.Marker(
location=point,
draggable=False,
popup=widgets.HTML(str(labels[index])),
)
for index, point in enumerate(points)
]
elif isinstance(popup, list):
labels = []
for i in range(len(points)):
label = ""
for item in popup:
label = label + str(item) + ": " + str(df[item][i]) + "<br>"
labels.append(label)
df["popup"] = labels
markers = [
ipyleaflet.Marker(
location=point,
draggable=False,
popup=widgets.HTML(labels[index]),
)
for index, point in enumerate(points)
]
else:
markers = [
ipyleaflet.Marker(location=point, draggable=False) for point in points
]
marker_cluster = ipyleaflet.MarkerCluster(markers=markers, name=layer_name)
self.add(marker_cluster)
self.default_style = {"cursor": "default"}
add_points_from_xy(self, data, x='longitude', y='latitude', popup=None, layer_name='Marker Cluster', color_column=None, marker_colors=None, icon_colors=['white'], icon_names=['info'], spin=False, add_legend=True, **kwargs)
¶
Adds a marker cluster to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
str | pd.DataFrame |
A csv or Pandas DataFrame containing x, y, z values. |
required |
x |
str |
The column name for the x values. Defaults to "longitude". |
'longitude' |
y |
str |
The column name for the y values. Defaults to "latitude". |
'latitude' |
popup |
list |
A list of column names to be used as the popup. Defaults to None. |
None |
layer_name |
str |
The name of the layer. Defaults to "Marker Cluster". |
'Marker Cluster' |
color_column |
str |
The column name for the color values. Defaults to None. |
None |
marker_colors |
list |
A list of colors to be used for the markers. Defaults to None. |
None |
icon_colors |
list |
A list of colors to be used for the icons. Defaults to ['white']. |
['white'] |
icon_names |
list |
A list of names to be used for the icons. More icons can be found at https://fontawesome.com/v4/icons. Defaults to ['info']. |
['info'] |
spin |
bool |
If True, the icon will spin. Defaults to False. |
False |
add_legend |
bool |
If True, a legend will be added to the map. Defaults to True. |
True |
Source code in geemap/geemap.py
def add_points_from_xy(
self,
data,
x="longitude",
y="latitude",
popup=None,
layer_name="Marker Cluster",
color_column=None,
marker_colors=None,
icon_colors=["white"],
icon_names=["info"],
spin=False,
add_legend=True,
**kwargs,
):
"""Adds a marker cluster to the map.
Args:
data (str | pd.DataFrame): A csv or Pandas DataFrame containing x, y, z values.
x (str, optional): The column name for the x values. Defaults to "longitude".
y (str, optional): The column name for the y values. Defaults to "latitude".
popup (list, optional): A list of column names to be used as the popup. Defaults to None.
layer_name (str, optional): The name of the layer. Defaults to "Marker Cluster".
color_column (str, optional): The column name for the color values. Defaults to None.
marker_colors (list, optional): A list of colors to be used for the markers. Defaults to None.
icon_colors (list, optional): A list of colors to be used for the icons. Defaults to ['white'].
icon_names (list, optional): A list of names to be used for the icons. More icons can be found at https://fontawesome.com/v4/icons. Defaults to ['info'].
spin (bool, optional): If True, the icon will spin. Defaults to False.
add_legend (bool, optional): If True, a legend will be added to the map. Defaults to True.
"""
import pandas as pd
data = github_raw_url(data)
color_options = [
"red",
"blue",
"green",
"purple",
"orange",
"darkred",
"lightred",
"beige",
"darkblue",
"darkgreen",
"cadetblue",
"darkpurple",
"white",
"pink",
"lightblue",
"lightgreen",
"gray",
"black",
"lightgray",
]
if isinstance(data, pd.DataFrame):
df = data
elif not data.startswith("http") and (not os.path.exists(data)):
raise FileNotFoundError("The specified input csv does not exist.")
else:
df = pd.read_csv(data)
df = points_from_xy(df, x, y)
col_names = df.columns.values.tolist()
if color_column is not None and color_column not in col_names:
raise ValueError(
f"The color column {color_column} does not exist in the dataframe."
)
if color_column is not None:
items = list(set(df[color_column]))
else:
items = None
if color_column is not None and marker_colors is None:
if len(items) > len(color_options):
raise ValueError(
f"The number of unique values in the color column {color_column} is greater than the number of available colors."
)
else:
marker_colors = color_options[: len(items)]
elif color_column is not None and marker_colors is not None:
if len(items) != len(marker_colors):
raise ValueError(
f"The number of unique values in the color column {color_column} is not equal to the number of available colors."
)
if items is not None:
if len(icon_colors) == 1:
icon_colors = icon_colors * len(items)
elif len(items) != len(icon_colors):
raise ValueError(
f"The number of unique values in the color column {color_column} is not equal to the number of available colors."
)
if len(icon_names) == 1:
icon_names = icon_names * len(items)
elif len(items) != len(icon_names):
raise ValueError(
f"The number of unique values in the color column {color_column} is not equal to the number of available colors."
)
if "geometry" in col_names:
col_names.remove("geometry")
if popup is not None:
if isinstance(popup, str) and (popup not in col_names):
raise ValueError(
f"popup must be one of the following: {', '.join(col_names)}"
)
elif isinstance(popup, list) and (
not all(item in col_names for item in popup)
):
raise ValueError(
f"All popup items must be select from: {', '.join(col_names)}"
)
else:
popup = col_names
df["x"] = df.geometry.x
df["y"] = df.geometry.y
points = list(zip(df["y"], df["x"]))
if popup is not None:
if isinstance(popup, str):
labels = df[popup]
markers = []
for index, point in enumerate(points):
if items is not None:
marker_color = marker_colors[
items.index(df[color_column][index])
]
icon_name = icon_names[items.index(df[color_column][index])]
icon_color = icon_colors[items.index(df[color_column][index])]
marker_icon = ipyleaflet.AwesomeIcon(
name=icon_name,
marker_color=marker_color,
icon_color=icon_color,
spin=spin,
)
else:
marker_icon = None
marker = ipyleaflet.Marker(
location=point,
draggable=False,
popup=widgets.HTML(str(labels[index])),
icon=marker_icon,
)
markers.append(marker)
elif isinstance(popup, list):
labels = []
for i in range(len(points)):
label = ""
for item in popup:
label = (
label
+ "<b>"
+ str(item)
+ "</b>"
+ ": "
+ str(df[item][i])
+ "<br>"
)
labels.append(label)
df["popup"] = labels
markers = []
for index, point in enumerate(points):
if items is not None:
marker_color = marker_colors[
items.index(df[color_column][index])
]
icon_name = icon_names[items.index(df[color_column][index])]
icon_color = icon_colors[items.index(df[color_column][index])]
marker_icon = ipyleaflet.AwesomeIcon(
name=icon_name,
marker_color=marker_color,
icon_color=icon_color,
spin=spin,
)
else:
marker_icon = None
marker = ipyleaflet.Marker(
location=point,
draggable=False,
popup=widgets.HTML(labels[index]),
icon=marker_icon,
)
markers.append(marker)
else:
markers = []
for point in points:
if items is not None:
marker_color = marker_colors[items.index(df[color_column][index])]
icon_name = icon_names[items.index(df[color_column][index])]
icon_color = icon_colors[items.index(df[color_column][index])]
marker_icon = ipyleaflet.AwesomeIcon(
name=icon_name,
marker_color=marker_color,
icon_color=icon_color,
spin=spin,
)
else:
marker_icon = None
marker = ipyleaflet.Marker(
location=point, draggable=False, icon=marker_icon
)
markers.append(marker)
marker_cluster = ipyleaflet.MarkerCluster(markers=markers, name=layer_name)
self.add(marker_cluster)
if items is not None and add_legend:
marker_colors = [check_color(c) for c in marker_colors]
self.add_legend(
title=color_column.title(), colors=marker_colors, labels=items
)
self.default_style = {"cursor": "default"}
add_raster(self, source, band=None, palette=None, vmin=None, vmax=None, nodata=None, attribution=None, layer_name='Local COG', zoom_to_layer=True, **kwargs)
¶
Add a local raster dataset to the map.
If you are using this function in JupyterHub on a remote server (e.g., Binder, Microsoft Planetary Computer) and
if the raster does not render properly, try installing jupyter-server-proxy using pip install jupyter-server-proxy
,
then running the following code before calling this function. For more info, see https://bit.ly/3JbmF93.
1 2 |
|
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source |
str |
The path to the GeoTIFF file or the URL of the Cloud Optimized GeoTIFF. |
required |
band |
int |
The band to use. Band indexing starts at 1. Defaults to None. |
None |
palette |
str |
The name of the color palette from |
None |
vmin |
float |
The minimum value to use when colormapping the palette when plotting a single band. Defaults to None. |
None |
vmax |
float |
The maximum value to use when colormapping the palette when plotting a single band. Defaults to None. |
None |
nodata |
float |
The value from the band to use to interpret as not valid data. Defaults to None. |
None |
attribution |
str |
Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None. |
None |
layer_name |
str |
The layer name to use. Defaults to 'Local COG'. |
'Local COG' |
zoom_to_layer |
bool |
Whether to zoom to the extent of the layer. Defaults to True. |
True |
Source code in geemap/geemap.py
def add_raster(
self,
source,
band=None,
palette=None,
vmin=None,
vmax=None,
nodata=None,
attribution=None,
layer_name="Local COG",
zoom_to_layer=True,
**kwargs,
):
"""Add a local raster dataset to the map.
If you are using this function in JupyterHub on a remote server (e.g., Binder, Microsoft Planetary Computer) and
if the raster does not render properly, try installing jupyter-server-proxy using `pip install jupyter-server-proxy`,
then running the following code before calling this function. For more info, see https://bit.ly/3JbmF93.
import os
os.environ['LOCALTILESERVER_CLIENT_PREFIX'] = 'proxy/{port}'
Args:
source (str): The path to the GeoTIFF file or the URL of the Cloud Optimized GeoTIFF.
band (int, optional): The band to use. Band indexing starts at 1. Defaults to None.
palette (str, optional): The name of the color palette from `palettable` to use when plotting a single band. See https://jiffyclub.github.io/palettable. Default is greyscale
vmin (float, optional): The minimum value to use when colormapping the palette when plotting a single band. Defaults to None.
vmax (float, optional): The maximum value to use when colormapping the palette when plotting a single band. Defaults to None.
nodata (float, optional): The value from the band to use to interpret as not valid data. Defaults to None.
attribution (str, optional): Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.
layer_name (str, optional): The layer name to use. Defaults to 'Local COG'.
zoom_to_layer (bool, optional): Whether to zoom to the extent of the layer. Defaults to True.
"""
tile_layer, tile_client = get_local_tile_layer(
source,
band=band,
palette=palette,
vmin=vmin,
vmax=vmax,
nodata=nodata,
attribution=attribution,
layer_name=layer_name,
return_client=True,
**kwargs,
)
self.add(tile_layer)
bounds = tile_client.bounds() # [ymin, ymax, xmin, xmax]
bounds = (
bounds[2],
bounds[0],
bounds[3],
bounds[1],
) # [minx, miny, maxx, maxy]
if zoom_to_layer:
self.zoom_to_bounds(bounds)
arc_add_layer(tile_layer.url, layer_name, True, 1.0)
if zoom_to_layer:
arc_zoom_to_extent(bounds[0], bounds[1], bounds[2], bounds[3])
if not hasattr(self, "cog_layer_dict"):
self.cog_layer_dict = {}
band_names = list(tile_client.metadata()["bands"].keys())
params = {
"tile_layer": tile_layer,
"tile_client": tile_client,
"band": band,
"band_names": band_names,
"bounds": bounds,
"type": "LOCAL",
}
self.cog_layer_dict[layer_name] = params
add_remote_tile(self, source, band=None, palette=None, vmin=None, vmax=None, nodata=None, attribution=None, layer_name=None, **kwargs)
¶
Add a remote Cloud Optimized GeoTIFF (COG) to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source |
str |
The path to the remote Cloud Optimized GeoTIFF. |
required |
band |
int |
The band to use. Band indexing starts at 1. Defaults to None. |
None |
palette |
str |
The name of the color palette from |
None |
vmin |
float |
The minimum value to use when colormapping the palette when plotting a single band. Defaults to None. |
None |
vmax |
float |
The maximum value to use when colormapping the palette when plotting a single band. Defaults to None. |
None |
nodata |
float |
The value from the band to use to interpret as not valid data. Defaults to None. |
None |
attribution |
str |
Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None. |
None |
layer_name |
str |
The layer name to use. Defaults to None. |
None |
Source code in geemap/geemap.py
def add_remote_tile(
self,
source,
band=None,
palette=None,
vmin=None,
vmax=None,
nodata=None,
attribution=None,
layer_name=None,
**kwargs,
):
"""Add a remote Cloud Optimized GeoTIFF (COG) to the map.
Args:
source (str): The path to the remote Cloud Optimized GeoTIFF.
band (int, optional): The band to use. Band indexing starts at 1. Defaults to None.
palette (str, optional): The name of the color palette from `palettable` to use when plotting a single band. See https://jiffyclub.github.io/palettable. Default is greyscale
vmin (float, optional): The minimum value to use when colormapping the palette when plotting a single band. Defaults to None.
vmax (float, optional): The maximum value to use when colormapping the palette when plotting a single band. Defaults to None.
nodata (float, optional): The value from the band to use to interpret as not valid data. Defaults to None.
attribution (str, optional): Attribution for the source raster. This defaults to a message about it being a local file.. Defaults to None.
layer_name (str, optional): The layer name to use. Defaults to None.
"""
if isinstance(source, str) and source.startswith("http"):
self.add_raster(
source,
band=band,
palette=palette,
vmin=vmin,
vmax=vmax,
nodata=nodata,
attribution=attribution,
layer_name=layer_name,
**kwargs,
)
else:
raise Exception("The source must be a URL.")
add_search_control(self, marker=None, url=None, zoom=5, property_name='display_name', position='topleft')
¶
Add a search control to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
marker |
ipyleaflet.Marker |
The marker to use. Defaults to None. |
None |
url |
str |
The URL to use for the search. Defaults to None. |
None |
zoom |
int |
The zoom level to use. Defaults to 5. |
5 |
property_name |
str |
The property name to use. Defaults to "display_name". |
'display_name' |
position |
str |
The position of the widget. Defaults to "topleft". |
'topleft' |
Source code in geemap/geemap.py
def add_search_control(
self,
marker=None,
url=None,
zoom=5,
property_name="display_name",
position="topleft",
):
"""Add a search control to the map.
Args:
marker (ipyleaflet.Marker, optional): The marker to use. Defaults to None.
url (str, optional): The URL to use for the search. Defaults to None.
zoom (int, optional): The zoom level to use. Defaults to 5.
property_name (str, optional): The property name to use. Defaults to "display_name".
position (str, optional): The position of the widget. Defaults to "topleft".
"""
if marker is None:
marker = ipyleaflet.Marker(
icon=ipyleaflet.AwesomeIcon(
name="check", marker_color="green", icon_color="darkgreen"
)
)
if url is None:
url = "https://nominatim.openstreetmap.org/search?format=json&q={s}"
search = ipyleaflet.SearchControl(
position=position,
url=url,
zoom=zoom,
property_name=property_name,
marker=marker,
)
self.add(search)
add_shapefile(self, in_shp, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover', encoding='utf-8')
¶
Adds a shapefile to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_shp |
str |
The input file path to the shapefile. |
required |
layer_name |
str |
The layer name to be used.. Defaults to "Untitled". |
'Untitled' |
style |
dict |
A dictionary specifying the style to be used. Defaults to {}. |
{} |
hover_style |
dict |
Hover style dictionary. Defaults to {}. |
{} |
style_callback |
function |
Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None. |
None |
fill_colors |
list |
The random colors to use for filling polygons. Defaults to ["black"]. |
['black'] |
info_mode |
str |
Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover". |
'on_hover' |
encoding |
str |
The encoding of the shapefile. Defaults to "utf-8". |
'utf-8' |
Exceptions:
Type | Description |
---|---|
FileNotFoundError |
The provided shapefile could not be found. |
Source code in geemap/geemap.py
def add_shp(
self,
in_shp,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
encoding="utf-8",
):
"""Adds a shapefile to the map.
Args:
in_shp (str): The input file path to the shapefile.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
encoding (str, optional): The encoding of the shapefile. Defaults to "utf-8".
Raises:
FileNotFoundError: The provided shapefile could not be found.
"""
in_shp = os.path.abspath(in_shp)
if not os.path.exists(in_shp):
raise FileNotFoundError("The provided shapefile could not be found.")
geojson = shp_to_geojson(in_shp)
self.add_geojson(
geojson,
layer_name,
style,
hover_style,
style_callback,
fill_colors,
info_mode,
encoding,
)
add_shp(self, in_shp, layer_name='Untitled', style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover', encoding='utf-8')
¶
Adds a shapefile to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_shp |
str |
The input file path to the shapefile. |
required |
layer_name |
str |
The layer name to be used.. Defaults to "Untitled". |
'Untitled' |
style |
dict |
A dictionary specifying the style to be used. Defaults to {}. |
{} |
hover_style |
dict |
Hover style dictionary. Defaults to {}. |
{} |
style_callback |
function |
Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None. |
None |
fill_colors |
list |
The random colors to use for filling polygons. Defaults to ["black"]. |
['black'] |
info_mode |
str |
Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover". |
'on_hover' |
encoding |
str |
The encoding of the shapefile. Defaults to "utf-8". |
'utf-8' |
Exceptions:
Type | Description |
---|---|
FileNotFoundError |
The provided shapefile could not be found. |
Source code in geemap/geemap.py
def add_shp(
self,
in_shp,
layer_name="Untitled",
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
encoding="utf-8",
):
"""Adds a shapefile to the map.
Args:
in_shp (str): The input file path to the shapefile.
layer_name (str, optional): The layer name to be used.. Defaults to "Untitled".
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
encoding (str, optional): The encoding of the shapefile. Defaults to "utf-8".
Raises:
FileNotFoundError: The provided shapefile could not be found.
"""
in_shp = os.path.abspath(in_shp)
if not os.path.exists(in_shp):
raise FileNotFoundError("The provided shapefile could not be found.")
geojson = shp_to_geojson(in_shp)
self.add_geojson(
geojson,
layer_name,
style,
hover_style,
style_callback,
fill_colors,
info_mode,
encoding,
)
add_stac_layer(self, url=None, collection=None, item=None, assets=None, bands=None, titiler_endpoint=None, name='STAC Layer', attribution='', opacity=1.0, shown=True, **kwargs)
¶
Adds a STAC TileLayer to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url |
str |
HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json |
None |
collection |
str |
The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2. |
None |
item |
str |
The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1. |
None |
assets |
str | list |
The Microsoft Planetary Computer STAC asset ID, e.g., ["SR_B7", "SR_B5", "SR_B4"]. |
None |
bands |
list |
A list of band names, e.g., ["SR_B7", "SR_B5", "SR_B4"] |
None |
titiler_endpoint |
str |
Titiler endpoint, e.g., "https://titiler.xyz", "https://planetarycomputer.microsoft.com/api/data/v1", "planetary-computer", "pc". Defaults to None. |
None |
name |
str |
The layer name to use for the layer. Defaults to 'STAC Layer'. |
'STAC Layer' |
attribution |
str |
The attribution to use. Defaults to ''. |
'' |
opacity |
float |
The opacity of the layer. Defaults to 1. |
1.0 |
shown |
bool |
A flag indicating whether the layer should be on by default. Defaults to True. |
True |
Source code in geemap/geemap.py
def add_stac_layer(
self,
url=None,
collection=None,
item=None,
assets=None,
bands=None,
titiler_endpoint=None,
name="STAC Layer",
attribution="",
opacity=1.0,
shown=True,
**kwargs,
):
"""Adds a STAC TileLayer to the map.
Args:
url (str): HTTP URL to a STAC item, e.g., https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json
collection (str): The Microsoft Planetary Computer STAC collection ID, e.g., landsat-8-c2-l2.
item (str): The Microsoft Planetary Computer STAC item ID, e.g., LC08_L2SP_047027_20201204_02_T1.
assets (str | list): The Microsoft Planetary Computer STAC asset ID, e.g., ["SR_B7", "SR_B5", "SR_B4"].
bands (list): A list of band names, e.g., ["SR_B7", "SR_B5", "SR_B4"]
titiler_endpoint (str, optional): Titiler endpoint, e.g., "https://titiler.xyz", "https://planetarycomputer.microsoft.com/api/data/v1", "planetary-computer", "pc". Defaults to None.
name (str, optional): The layer name to use for the layer. Defaults to 'STAC Layer'.
attribution (str, optional): The attribution to use. Defaults to ''.
opacity (float, optional): The opacity of the layer. Defaults to 1.
shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
"""
tile_url = stac_tile(
url, collection, item, assets, bands, titiler_endpoint, **kwargs
)
bounds = stac_bounds(url, collection, item, titiler_endpoint)
self.add_tile_layer(tile_url, name, attribution, opacity, shown)
self.fit_bounds([[bounds[1], bounds[0]], [bounds[3], bounds[2]]])
if not hasattr(self, "cog_layer_dict"):
self.cog_layer_dict = {}
if assets is None and bands is not None:
assets = bands
params = {
"url": url,
"collection": collection,
"item": item,
"assets": assets,
"bounds": bounds,
"titiler_endpoint": titiler_endpoint,
"type": "STAC",
}
self.cog_layer_dict[name] = params
add_styled_vector(self, ee_object, column, palette, layer_name='Untitled', shown=True, opacity=1.0, **kwargs)
¶
Adds a styled vector to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ee_object |
object |
An ee.FeatureCollection. |
required |
column |
str |
The column name to use for styling. |
required |
palette |
list | dict |
The palette (e.g., list of colors or a dict containing label and color pairs) to use for styling. |
required |
layer_name |
str |
The name to be used for the new layer. Defaults to "Untitled". |
'Untitled' |
shown |
bool |
A flag indicating whether the layer should be on by default. Defaults to True. |
True |
opacity |
float |
The opacity of the layer. Defaults to 1.0. |
1.0 |
Source code in geemap/geemap.py
def add_styled_vector(
self,
ee_object,
column,
palette,
layer_name="Untitled",
shown=True,
opacity=1.0,
**kwargs,
):
"""Adds a styled vector to the map.
Args:
ee_object (object): An ee.FeatureCollection.
column (str): The column name to use for styling.
palette (list | dict): The palette (e.g., list of colors or a dict containing label and color pairs) to use for styling.
layer_name (str, optional): The name to be used for the new layer. Defaults to "Untitled".
shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
opacity (float, optional): The opacity of the layer. Defaults to 1.0.
"""
if isinstance(palette, str):
from .colormaps import get_palette
count = ee_object.size().getInfo()
palette = get_palette(palette, count)
styled_vector = vector_styling(ee_object, column, palette, **kwargs)
self.addLayer(
styled_vector.style(**{"styleProperty": "style"}),
{},
layer_name,
shown,
opacity,
)
add_text(self, text, fontsize=20, fontcolor='black', bold=False, padding='5px', background=True, bg_color='white', border_radius='5px', position='bottomright', **kwargs)
¶
Add text to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text |
str |
The text to add. |
required |
fontsize |
int |
The font size. Defaults to 20. |
20 |
fontcolor |
str |
The font color. Defaults to "black". |
'black' |
bold |
bool |
Whether to use bold font. Defaults to False. |
False |
padding |
str |
The padding. Defaults to "5px". |
'5px' |
background |
bool |
Whether to use background. Defaults to True. |
True |
bg_color |
str |
The background color. Defaults to "white". |
'white' |
border_radius |
str |
The border radius. Defaults to "5px". |
'5px' |
position |
str |
The position of the widget. Defaults to "bottomright". |
'bottomright' |
Source code in geemap/geemap.py
def add_text(
self,
text,
fontsize=20,
fontcolor="black",
bold=False,
padding="5px",
background=True,
bg_color="white",
border_radius="5px",
position="bottomright",
**kwargs,
):
"""Add text to the map.
Args:
text (str): The text to add.
fontsize (int, optional): The font size. Defaults to 20.
fontcolor (str, optional): The font color. Defaults to "black".
bold (bool, optional): Whether to use bold font. Defaults to False.
padding (str, optional): The padding. Defaults to "5px".
background (bool, optional): Whether to use background. Defaults to True.
bg_color (str, optional): The background color. Defaults to "white".
border_radius (str, optional): The border radius. Defaults to "5px".
position (str, optional): The position of the widget. Defaults to "bottomright".
"""
if background:
text = f"""<div style="font-size: {fontsize}px; color: {fontcolor}; font-weight: {'bold' if bold else 'normal'};
padding: {padding}; background-color: {bg_color};
border-radius: {border_radius};">{text}</div>"""
else:
text = f"""<div style="font-size: {fontsize}px; color: {fontcolor}; font-weight: {'bold' if bold else 'normal'};
padding: {padding};">{text}</div>"""
self.add_html(text, position=position, **kwargs)
add_tile_layer(self, url='https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', name='Untitled', attribution='', opacity=1.0, shown=True, **kwargs)
¶
Adds a TileLayer to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url |
str |
The URL of the tile layer. Defaults to 'https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png'. |
'https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png' |
name |
str |
The layer name to use for the layer. Defaults to 'Untitled'. |
'Untitled' |
attribution |
str |
The attribution to use. Defaults to ''. |
'' |
opacity |
float |
The opacity of the layer. Defaults to 1. |
1.0 |
shown |
bool |
A flag indicating whether the layer should be on by default. Defaults to True. |
True |
Source code in geemap/geemap.py
def add_tile_layer(
self,
url="https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png",
name="Untitled",
attribution="",
opacity=1.0,
shown=True,
**kwargs,
):
"""Adds a TileLayer to the map.
Args:
url (str, optional): The URL of the tile layer. Defaults to 'https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png'.
name (str, optional): The layer name to use for the layer. Defaults to 'Untitled'.
attribution (str, optional): The attribution to use. Defaults to ''.
opacity (float, optional): The opacity of the layer. Defaults to 1.
shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
"""
if "max_zoom" not in kwargs:
kwargs["max_zoom"] = 100
if "max_native_zoom" not in kwargs:
kwargs["max_native_zoom"] = 100
try:
tile_layer = ipyleaflet.TileLayer(
url=url,
name=name,
attribution=attribution,
opacity=opacity,
visible=shown,
**kwargs,
)
self.add(tile_layer)
except Exception as e:
print("Failed to add the specified TileLayer.")
raise Exception(e)
add_time_slider(self, ee_object, vis_params={}, region=None, layer_name='Time series', labels=None, time_interval=1, position='bottomright', slider_length='150px', date_format='YYYY-MM-dd', opacity=1.0, **kwargs)
¶
Adds a time slider to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ee_object |
ee.Image | ee.ImageCollection |
The Image or ImageCollection to visualize. |
required |
vis_params |
dict |
Visualization parameters to use for visualizing image. Defaults to {}. |
{} |
region |
ee.Geometry | ee.FeatureCollection |
The region to visualize. |
None |
layer_name |
str |
The layer name to be used. Defaults to "Time series". |
'Time series' |
labels |
list |
The list of labels to be used for the time series. Defaults to None. |
None |
time_interval |
int |
Time interval in seconds. Defaults to 1. |
1 |
position |
str |
Position to place the time slider, can be any of ['topleft', 'topright', 'bottomleft', 'bottomright']. Defaults to "bottomright". |
'bottomright' |
slider_length |
str |
Length of the time slider. Defaults to "150px". |
'150px' |
date_format |
str |
The date format to use. Defaults to 'YYYY-MM-dd'. |
'YYYY-MM-dd' |
opacity |
float |
The opacity of layers. Defaults to 1.0. |
1.0 |
Exceptions:
Type | Description |
---|---|
TypeError |
If the ee_object is not ee.Image | ee.ImageCollection. |
Source code in geemap/geemap.py
def add_time_slider(
self,
ee_object,
vis_params={},
region=None,
layer_name="Time series",
labels=None,
time_interval=1,
position="bottomright",
slider_length="150px",
date_format="YYYY-MM-dd",
opacity=1.0,
**kwargs,
):
"""Adds a time slider to the map.
Args:
ee_object (ee.Image | ee.ImageCollection): The Image or ImageCollection to visualize.
vis_params (dict, optional): Visualization parameters to use for visualizing image. Defaults to {}.
region (ee.Geometry | ee.FeatureCollection): The region to visualize.
layer_name (str, optional): The layer name to be used. Defaults to "Time series".
labels (list, optional): The list of labels to be used for the time series. Defaults to None.
time_interval (int, optional): Time interval in seconds. Defaults to 1.
position (str, optional): Position to place the time slider, can be any of ['topleft', 'topright', 'bottomleft', 'bottomright']. Defaults to "bottomright".
slider_length (str, optional): Length of the time slider. Defaults to "150px".
date_format (str, optional): The date format to use. Defaults to 'YYYY-MM-dd'.
opacity (float, optional): The opacity of layers. Defaults to 1.0.
Raises:
TypeError: If the ee_object is not ee.Image | ee.ImageCollection.
"""
import threading
if isinstance(ee_object, ee.Image):
if region is not None:
if isinstance(region, ee.Geometry):
ee_object = ee_object.clip(region)
elif isinstance(region, ee.FeatureCollection):
ee_object = ee_object.clipToCollection(region)
if layer_name not in self.ee_raster_layer_names:
self.addLayer(ee_object, {}, layer_name, False, opacity)
band_names = ee_object.bandNames()
ee_object = ee.ImageCollection(
ee_object.bandNames().map(lambda b: ee_object.select([b]))
)
if labels is not None:
if len(labels) != int(ee_object.size().getInfo()):
raise ValueError(
"The length of labels must be equal to the number of bands in the image."
)
else:
labels = band_names.getInfo()
elif isinstance(ee_object, ee.ImageCollection):
if region is not None:
if isinstance(region, ee.Geometry):
ee_object = ee_object.map(lambda img: img.clip(region))
elif isinstance(region, ee.FeatureCollection):
ee_object = ee_object.map(lambda img: img.clipToCollection(region))
if labels is not None:
if len(labels) != int(ee_object.size().getInfo()):
raise ValueError(
"The length of labels must be equal to the number of images in the ImageCollection."
)
else:
labels = (
ee_object.aggregate_array("system:time_start")
.map(lambda d: ee.Date(d).format(date_format))
.getInfo()
)
else:
raise TypeError("The ee_object must be an ee.Image or ee.ImageCollection")
# if labels is not None:
# size = len(labels)
# else:
# size = ee_object.size().getInfo()
# labels = [str(i) for i in range(1, size + 1)]
first = ee.Image(ee_object.first())
if layer_name not in self.ee_raster_layer_names:
self.addLayer(ee_object.toBands(), {}, layer_name, False, opacity)
self.addLayer(first, vis_params, "Image X", True, opacity)
slider = widgets.IntSlider(
min=1,
max=len(labels),
readout=False,
continuous_update=False,
layout=widgets.Layout(width=slider_length),
)
label = widgets.Label(
value=labels[0], layout=widgets.Layout(padding="0px 5px 0px 5px")
)
play_btn = widgets.Button(
icon="play",
tooltip="Play the time slider",
button_style="primary",
layout=widgets.Layout(width="32px"),
)
pause_btn = widgets.Button(
icon="pause",
tooltip="Pause the time slider",
button_style="primary",
layout=widgets.Layout(width="32px"),
)
close_btn = widgets.Button(
icon="times",
tooltip="Close the time slider",
button_style="primary",
layout=widgets.Layout(width="32px"),
)
play_chk = widgets.Checkbox(value=False)
slider_widget = widgets.HBox([slider, label, play_btn, pause_btn, close_btn])
def play_click(b):
import time
play_chk.value = True
def work(slider):
while play_chk.value:
if slider.value < len(labels):
slider.value += 1
else:
slider.value = 1
time.sleep(time_interval)
thread = threading.Thread(target=work, args=(slider,))
thread.start()
def pause_click(b):
play_chk.value = False
play_btn.on_click(play_click)
pause_btn.on_click(pause_click)
def slider_changed(change):
self.default_style = {"cursor": "wait"}
index = slider.value - 1
label.value = labels[index]
image = ee.Image(ee_object.toList(ee_object.size()).get(index))
if layer_name not in self.ee_raster_layer_names:
self.addLayer(ee_object.toBands(), {}, layer_name, False, opacity)
self.addLayer(image, vis_params, "Image X", True, opacity)
self.default_style = {"cursor": "default"}
slider.observe(slider_changed, "value")
def close_click(b):
play_chk.value = False
self.toolbar_reset()
self.remove_ee_layer("Image X")
self.remove_ee_layer(layer_name)
if self.slider_ctrl is not None and self.slider_ctrl in self.controls:
self.remove_control(self.slider_ctrl)
slider_widget.close()
close_btn.on_click(close_click)
slider_ctrl = ipyleaflet.WidgetControl(widget=slider_widget, position=position)
self.add(slider_ctrl)
self.slider_ctrl = slider_ctrl
add_toolbar(self, position='topright', **kwargs)
¶
Add a toolbar to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
position |
str |
The position of the toolbar. Defaults to "topright". |
'topright' |
Source code in geemap/geemap.py
def add_toolbar(self, position="topright", **kwargs):
"""Add a toolbar to the map.
Args:
position (str, optional): The position of the toolbar. Defaults to "topright".
"""
from .toolbar import main_toolbar
main_toolbar(self, position, **kwargs)
add_vector(self, filename, layer_name='Untitled', to_ee=False, bbox=None, mask=None, rows=None, style={}, hover_style={}, style_callback=None, fill_colors=['black'], info_mode='on_hover', encoding='utf-8', **kwargs)
¶
Adds any geopandas-supported vector dataset to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename |
str |
Either the absolute or relative path to the file or URL to be opened, or any object with a read() method (such as an open file or StringIO). |
required |
layer_name |
str |
The layer name to use. Defaults to "Untitled". |
'Untitled' |
to_ee |
bool |
Whether to convert the GeoJSON to ee.FeatureCollection. Defaults to False. |
False |
bbox |
tuple | GeoDataFrame or GeoSeries | shapely Geometry |
Filter features by given bounding box, GeoSeries, GeoDataFrame or a shapely geometry. CRS mis-matches are resolved if given a GeoSeries or GeoDataFrame. Cannot be used with mask. Defaults to None. |
None |
mask |
dict | GeoDataFrame or GeoSeries | shapely Geometry |
Filter for features that intersect with the given dict-like geojson geometry, GeoSeries, GeoDataFrame or shapely geometry. CRS mis-matches are resolved if given a GeoSeries or GeoDataFrame. Cannot be used with bbox. Defaults to None. |
None |
rows |
int or slice |
Load in specific rows by passing an integer (first n rows) or a slice() object.. Defaults to None. |
None |
style |
dict |
A dictionary specifying the style to be used. Defaults to {}. |
{} |
hover_style |
dict |
Hover style dictionary. Defaults to {}. |
{} |
style_callback |
function |
Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None. |
None |
fill_colors |
list |
The random colors to use for filling polygons. Defaults to ["black"]. |
['black'] |
info_mode |
str |
Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover". |
'on_hover' |
encoding |
str |
The encoding to use to read the file. Defaults to "utf-8". |
'utf-8' |
Source code in geemap/geemap.py
def add_vector(
self,
filename,
layer_name="Untitled",
to_ee=False,
bbox=None,
mask=None,
rows=None,
style={},
hover_style={},
style_callback=None,
fill_colors=["black"],
info_mode="on_hover",
encoding="utf-8",
**kwargs,
):
"""Adds any geopandas-supported vector dataset to the map.
Args:
filename (str): Either the absolute or relative path to the file or URL to be opened, or any object with a read() method (such as an open file or StringIO).
layer_name (str, optional): The layer name to use. Defaults to "Untitled".
to_ee (bool, optional): Whether to convert the GeoJSON to ee.FeatureCollection. Defaults to False.
bbox (tuple | GeoDataFrame or GeoSeries | shapely Geometry, optional): Filter features by given bounding box, GeoSeries, GeoDataFrame or a shapely geometry. CRS mis-matches are resolved if given a GeoSeries or GeoDataFrame. Cannot be used with mask. Defaults to None.
mask (dict | GeoDataFrame or GeoSeries | shapely Geometry, optional): Filter for features that intersect with the given dict-like geojson geometry, GeoSeries, GeoDataFrame or shapely geometry. CRS mis-matches are resolved if given a GeoSeries or GeoDataFrame. Cannot be used with bbox. Defaults to None.
rows (int or slice, optional): Load in specific rows by passing an integer (first n rows) or a slice() object.. Defaults to None.
style (dict, optional): A dictionary specifying the style to be used. Defaults to {}.
hover_style (dict, optional): Hover style dictionary. Defaults to {}.
style_callback (function, optional): Styling function that is called for each feature, and should return the feature style. This styling function takes the feature as argument. Defaults to None.
fill_colors (list, optional): The random colors to use for filling polygons. Defaults to ["black"].
info_mode (str, optional): Displays the attributes by either on_hover or on_click. Any value other than "on_hover" or "on_click" will be treated as None. Defaults to "on_hover".
encoding (str, optional): The encoding to use to read the file. Defaults to "utf-8".
"""
if not filename.startswith("http"):
filename = os.path.abspath(filename)
else:
filename = github_raw_url(filename)
if to_ee:
fc = vector_to_ee(
filename,
bbox=bbox,
mask=mask,
rows=rows,
geodesic=True,
**kwargs,
)
self.addLayer(fc, {}, layer_name)
else:
ext = os.path.splitext(filename)[1].lower()
if ext == ".shp":
self.add_shapefile(
filename,
layer_name,
style,
hover_style,
style_callback,
fill_colors,
info_mode,
encoding,
)
elif ext in [".json", ".geojson"]:
self.add_geojson(
filename,
layer_name,
style,
hover_style,
style_callback,
fill_colors,
info_mode,
encoding,
)
else:
geojson = vector_to_geojson(
filename,
bbox=bbox,
mask=mask,
rows=rows,
epsg="4326",
**kwargs,
)
self.add_geojson(
geojson,
layer_name,
style,
hover_style,
style_callback,
fill_colors,
info_mode,
encoding,
)
add_velocity(self, data, zonal_speed, meridional_speed, latitude_dimension='lat', longitude_dimension='lon', level_dimension='lev', level_index=0, time_index=0, velocity_scale=0.01, max_velocity=20, display_options={}, name='Velocity')
¶
Add a velocity layer to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
str | xr.Dataset |
The data to use for the velocity layer. It can be a file path to a NetCDF file or an xarray Dataset. |
required |
zonal_speed |
str |
Name of the zonal speed in the dataset. See https://en.wikipedia.org/wiki/Zonal_and_meridional_flow. |
required |
meridional_speed |
str |
Name of the meridional speed in the dataset. See https://en.wikipedia.org/wiki/Zonal_and_meridional_flow. |
required |
latitude_dimension |
str |
Name of the latitude dimension in the dataset. Defaults to 'lat'. |
'lat' |
longitude_dimension |
str |
Name of the longitude dimension in the dataset. Defaults to 'lon'. |
'lon' |
level_dimension |
str |
Name of the level dimension in the dataset. Defaults to 'lev'. |
'lev' |
level_index |
int |
The index of the level dimension to display. Defaults to 0. |
0 |
time_index |
int |
The index of the time dimension to display. Defaults to 0. |
0 |
velocity_scale |
float |
The scale of the velocity. Defaults to 0.01. |
0.01 |
max_velocity |
int |
The maximum velocity to display. Defaults to 20. |
20 |
display_options |
dict |
The display options for the velocity layer. Defaults to {}. See https://bit.ly/3uf8t6w. |
{} |
name |
str |
Layer name to use . Defaults to 'Velocity'. |
'Velocity' |
Exceptions:
Type | Description |
---|---|
ImportError |
If the xarray package is not installed. |
ValueError |
If the data is not a NetCDF file or an xarray Dataset. |
Source code in geemap/geemap.py
def add_velocity(
self,
data,
zonal_speed,
meridional_speed,
latitude_dimension="lat",
longitude_dimension="lon",
level_dimension="lev",
level_index=0,
time_index=0,
velocity_scale=0.01,
max_velocity=20,
display_options={},
name="Velocity",
):
"""Add a velocity layer to the map.
Args:
data (str | xr.Dataset): The data to use for the velocity layer. It can be a file path to a NetCDF file or an xarray Dataset.
zonal_speed (str): Name of the zonal speed in the dataset. See https://en.wikipedia.org/wiki/Zonal_and_meridional_flow.
meridional_speed (str): Name of the meridional speed in the dataset. See https://en.wikipedia.org/wiki/Zonal_and_meridional_flow.
latitude_dimension (str, optional): Name of the latitude dimension in the dataset. Defaults to 'lat'.
longitude_dimension (str, optional): Name of the longitude dimension in the dataset. Defaults to 'lon'.
level_dimension (str, optional): Name of the level dimension in the dataset. Defaults to 'lev'.
level_index (int, optional): The index of the level dimension to display. Defaults to 0.
time_index (int, optional): The index of the time dimension to display. Defaults to 0.
velocity_scale (float, optional): The scale of the velocity. Defaults to 0.01.
max_velocity (int, optional): The maximum velocity to display. Defaults to 20.
display_options (dict, optional): The display options for the velocity layer. Defaults to {}. See https://bit.ly/3uf8t6w.
name (str, optional): Layer name to use . Defaults to 'Velocity'.
Raises:
ImportError: If the xarray package is not installed.
ValueError: If the data is not a NetCDF file or an xarray Dataset.
"""
try:
import xarray as xr
from ipyleaflet.velocity import Velocity
except ImportError:
raise ImportError(
"The xarray package is required to add a velocity layer. "
"Please install it with `pip install xarray`."
)
if isinstance(data, str):
if data.startswith("http"):
data = download_file(data)
ds = xr.open_dataset(data)
elif isinstance(data, xr.Dataset):
ds = data
else:
raise ValueError("The data must be a file path or xarray dataset.")
coords = list(ds.coords.keys())
# Rasterio does not handle time or levels. So we must drop them
if "time" in coords:
ds = ds.isel(time=time_index, drop=True)
params = {level_dimension: level_index}
if level_dimension in coords:
ds = ds.isel(drop=True, **params)
wind = Velocity(
data=ds,
zonal_speed=zonal_speed,
meridional_speed=meridional_speed,
latitude_dimension=latitude_dimension,
longitude_dimension=longitude_dimension,
velocity_scale=velocity_scale,
max_velocity=max_velocity,
display_options=display_options,
name=name,
)
self.add(wind)
add_widget(self, content, position='bottomright', add_header=True, opened=True, show_close_button=True, widget_icon='gear', close_button_icon='times', widget_args={}, close_button_args={}, display_widget=None, **kwargs)
¶
Add a widget (e.g., text, HTML, figure) to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
content |
str | ipywidgets.Widget | object |
The widget to add. |
required |
position |
str |
The position of the widget. Defaults to "bottomright". |
'bottomright' |
add_header |
bool |
Whether to add a header with close buttons to the widget. Defaults to True. |
True |
opened |
bool |
Whether to open the toolbar. Defaults to True. |
True |
show_close_button |
bool |
Whether to show the close button. Defaults to True. |
True |
widget_icon |
str |
The icon name for the toolbar button. Defaults to 'gear'. |
'gear' |
close_button_icon |
str |
The icon name for the close button. Defaults to "times". |
'times' |
widget_args |
dict |
Additional arguments to pass to the toolbar button. Defaults to {}. |
{} |
close_button_args |
dict |
Additional arguments to pass to the close button. Defaults to {}. |
{} |
display_widget |
ipywidgets.Widget |
The widget to be displayed when the toolbar is clicked. |
None |
**kwargs |
Additional arguments to pass to the HTML or Output widgets |
{} |
Source code in geemap/geemap.py
def add_widget(
self,
content,
position="bottomright",
add_header=True,
opened=True,
show_close_button=True,
widget_icon="gear",
close_button_icon="times",
widget_args={},
close_button_args={},
display_widget=None,
**kwargs,
):
"""Add a widget (e.g., text, HTML, figure) to the map.
Args:
content (str | ipywidgets.Widget | object): The widget to add.
position (str, optional): The position of the widget. Defaults to "bottomright".
add_header (bool, optional): Whether to add a header with close buttons to the widget. Defaults to True.
opened (bool, optional): Whether to open the toolbar. Defaults to True.
show_close_button (bool, optional): Whether to show the close button. Defaults to True.
widget_icon (str, optional): The icon name for the toolbar button. Defaults to 'gear'.
close_button_icon (str, optional): The icon name for the close button. Defaults to "times".
widget_args (dict, optional): Additional arguments to pass to the toolbar button. Defaults to {}.
close_button_args (dict, optional): Additional arguments to pass to the close button. Defaults to {}.
display_widget (ipywidgets.Widget, optional): The widget to be displayed when the toolbar is clicked.
**kwargs: Additional arguments to pass to the HTML or Output widgets
"""
allowed_positions = ["topleft", "topright", "bottomleft", "bottomright"]
if position not in allowed_positions:
raise Exception(f"position must be one of {allowed_positions}")
if "layout" not in kwargs:
kwargs["layout"] = widgets.Layout(padding="0px 4px 0px 4px")
try:
if add_header:
if isinstance(content, str):
widget = widgets.HTML(value=content, **kwargs)
else:
widget = content
widget_template(
widget,
opened,
show_close_button,
widget_icon,
close_button_icon,
widget_args,
close_button_args,
display_widget,
self,
position,
)
else:
if isinstance(content, str):
widget = widgets.HTML(value=content, **kwargs)
else:
widget = widgets.Output(**kwargs)
with widget:
display(content)
control = ipyleaflet.WidgetControl(widget=widget, position=position)
self.add(control)
except Exception as e:
raise Exception(f"Error adding widget: {e}")
add_wms_layer(self, url, layers, name=None, attribution='', format='image/png', transparent=True, opacity=1.0, shown=True, **kwargs)
¶
Add a WMS layer to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url |
str |
The URL of the WMS web service. |
required |
layers |
str |
Comma-separated list of WMS layers to show. |
required |
name |
str |
The layer name to use on the layer control. Defaults to None. |
None |
attribution |
str |
The attribution of the data layer. Defaults to ''. |
'' |
format |
str |
WMS image format (use ‘image/png’ for layers with transparency). Defaults to 'image/png'. |
'image/png' |
transparent |
bool |
If True, the WMS service will return images with transparency. Defaults to True. |
True |
opacity |
float |
The opacity of the layer. Defaults to 1.0. |
1.0 |
shown |
bool |
A flag indicating whether the layer should be on by default. Defaults to True. |
True |
Source code in geemap/geemap.py
def add_wms_layer(
self,
url,
layers,
name=None,
attribution="",
format="image/png",
transparent=True,
opacity=1.0,
shown=True,
**kwargs,
):
"""Add a WMS layer to the map.
Args:
url (str): The URL of the WMS web service.
layers (str): Comma-separated list of WMS layers to show.
name (str, optional): The layer name to use on the layer control. Defaults to None.
attribution (str, optional): The attribution of the data layer. Defaults to ''.
format (str, optional): WMS image format (use ‘image/png’ for layers with transparency). Defaults to 'image/png'.
transparent (bool, optional): If True, the WMS service will return images with transparency. Defaults to True.
opacity (float, optional): The opacity of the layer. Defaults to 1.0.
shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
"""
if name is None:
name = str(layers)
try:
wms_layer = ipyleaflet.WMSLayer(
url=url,
layers=layers,
name=name,
attribution=attribution,
format=format,
transparent=transparent,
opacity=opacity,
visible=shown,
**kwargs,
)
self.add(wms_layer)
except Exception as e:
print("Failed to add the specified WMS TileLayer.")
raise Exception(e)
add_xy_data(self, in_csv, x='longitude', y='latitude', label=None, layer_name='Marker cluster', to_ee=False)
¶
Adds points from a CSV file containing lat/lon information and display data on the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_csv |
str |
The file path to the input CSV file. |
required |
x |
str |
The name of the column containing longitude coordinates. Defaults to "longitude". |
'longitude' |
y |
str |
The name of the column containing latitude coordinates. Defaults to "latitude". |
'latitude' |
label |
str |
The name of the column containing label information to used for marker popup. Defaults to None. |
None |
layer_name |
str |
The layer name to use. Defaults to "Marker cluster". |
'Marker cluster' |
to_ee |
bool |
Whether to convert the csv to an ee.FeatureCollection. |
False |
Exceptions:
Type | Description |
---|---|
FileNotFoundError |
The specified input csv does not exist. |
ValueError |
The specified x column does not exist. |
ValueError |
The specified y column does not exist. |
ValueError |
The specified label column does not exist. |
Source code in geemap/geemap.py
def add_xy_data(
self,
in_csv,
x="longitude",
y="latitude",
label=None,
layer_name="Marker cluster",
to_ee=False,
):
"""Adds points from a CSV file containing lat/lon information and display data on the map.
Args:
in_csv (str): The file path to the input CSV file.
x (str, optional): The name of the column containing longitude coordinates. Defaults to "longitude".
y (str, optional): The name of the column containing latitude coordinates. Defaults to "latitude".
label (str, optional): The name of the column containing label information to used for marker popup. Defaults to None.
layer_name (str, optional): The layer name to use. Defaults to "Marker cluster".
to_ee (bool, optional): Whether to convert the csv to an ee.FeatureCollection.
Raises:
FileNotFoundError: The specified input csv does not exist.
ValueError: The specified x column does not exist.
ValueError: The specified y column does not exist.
ValueError: The specified label column does not exist.
"""
import pandas as pd
if not in_csv.startswith("http") and (not os.path.exists(in_csv)):
raise FileNotFoundError("The specified input csv does not exist.")
df = pd.read_csv(in_csv)
col_names = df.columns.values.tolist()
if x not in col_names:
raise ValueError(f"x must be one of the following: {', '.join(col_names)}")
if y not in col_names:
raise ValueError(f"y must be one of the following: {', '.join(col_names)}")
if label is not None and (label not in col_names):
raise ValueError(
f"label must be one of the following: {', '.join(col_names)}"
)
self.default_style = {"cursor": "wait"}
if to_ee:
fc = csv_to_ee(in_csv, latitude=y, longitude=x)
self.addLayer(fc, {}, layer_name)
else:
points = list(zip(df[y], df[x]))
if label is not None:
labels = df[label]
markers = [
ipyleaflet.Marker(
location=point,
draggable=False,
popup=widgets.HTML(str(labels[index])),
)
for index, point in enumerate(points)
]
else:
markers = [
ipyleaflet.Marker(location=point, draggable=False)
for point in points
]
marker_cluster = ipyleaflet.MarkerCluster(markers=markers, name=layer_name)
self.add(marker_cluster)
self.default_style = {"cursor": "default"}
add_xyz_service(self, provider, **kwargs)
¶
Add a XYZ tile layer to the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
provider |
str |
A tile layer name starts with xyz or qms. For example, xyz.OpenTopoMap, |
required |
Exceptions:
Type | Description |
---|---|
ValueError |
The provider is not valid. It must start with xyz or qms. |
Source code in geemap/geemap.py
def add_xyz_service(self, provider, **kwargs):
"""Add a XYZ tile layer to the map.
Args:
provider (str): A tile layer name starts with xyz or qms. For example, xyz.OpenTopoMap,
Raises:
ValueError: The provider is not valid. It must start with xyz or qms.
"""
import xyzservices.providers as xyz
from xyzservices import TileProvider
if provider.startswith("xyz"):
name = provider[4:]
xyz_provider = xyz.flatten()[name]
url = xyz_provider.build_url()
attribution = xyz_provider.attribution
if attribution.strip() == "":
attribution = " "
self.add_tile_layer(url, name, attribution)
elif provider.startswith("qms"):
name = provider[4:]
qms_provider = TileProvider.from_qms(name)
url = qms_provider.build_url()
attribution = qms_provider.attribution
if attribution.strip() == "":
attribution = " "
self.add_tile_layer(url, name, attribution)
else:
raise ValueError(
f"The provider {provider} is not valid. It must start with xyz or qms."
)
basemap_demo(self)
¶
A demo for using geemap basemaps.
Source code in geemap/geemap.py
def basemap_demo(self):
"""A demo for using geemap basemaps."""
dropdown = widgets.Dropdown(
options=list(basemaps.keys()),
value="HYBRID",
description="Basemaps",
)
def on_click(change):
basemap_name = change["new"]
old_basemap = self.layers[-1]
self.substitute_layer(old_basemap, get_basemap(basemaps[basemap_name]))
dropdown.observe(on_click, "value")
basemap_control = ipyleaflet.WidgetControl(widget=dropdown, position="topright")
self.add(basemap_control)
centerObject(self, ee_object, zoom=None)
¶
Centers the map view on a given object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ee_object |
Element|Geometry |
An Earth Engine object to center on a geometry, image or feature. |
required |
zoom |
int |
The zoom level, from 1 to 24. Defaults to None. |
None |
Source code in geemap/geemap.py
def center_object(self, ee_object, zoom=None):
"""Centers the map view on a given object.
Args:
ee_object (Element|Geometry): An Earth Engine object to center on a geometry, image or feature.
zoom (int, optional): The zoom level, from 1 to 24. Defaults to None.
"""
maxError = 0.001
if isinstance(ee_object, ee.Geometry):
geometry = ee_object.transform(maxError=maxError)
else:
try:
geometry = ee_object.geometry(maxError=maxError).transform(
maxError=maxError
)
except Exception:
raise Exception(
"ee_object must be an instance of one of ee.Geometry, ee.FeatureCollection, ee.Image, or ee.ImageCollection."
)
if zoom is not None:
if not isinstance(zoom, int):
raise Exception("Zoom must be an integer.")
else:
centroid = geometry.centroid(maxError=maxError).getInfo()["coordinates"]
lat = centroid[1]
lon = centroid[0]
self.set_center(lon, lat, zoom)
if is_arcpy():
arc_zoom_to_extent(lon, lat, lon, lat)
else:
coordinates = geometry.bounds(maxError).getInfo()["coordinates"][0]
x = [c[0] for c in coordinates]
y = [c[1] for c in coordinates]
xmin = min(x)
xmax = max(x)
ymin = min(y)
ymax = max(y)
bounds = [[ymin, xmin], [ymax, xmax]]
self.fit_bounds(bounds)
if is_arcpy():
arc_zoom_to_extent(xmin, ymin, xmax, ymax)
center_object(self, ee_object, zoom=None)
¶
Centers the map view on a given object.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ee_object |
Element|Geometry |
An Earth Engine object to center on a geometry, image or feature. |
required |
zoom |
int |
The zoom level, from 1 to 24. Defaults to None. |
None |
Source code in geemap/geemap.py
def center_object(self, ee_object, zoom=None):
"""Centers the map view on a given object.
Args:
ee_object (Element|Geometry): An Earth Engine object to center on a geometry, image or feature.
zoom (int, optional): The zoom level, from 1 to 24. Defaults to None.
"""
maxError = 0.001
if isinstance(ee_object, ee.Geometry):
geometry = ee_object.transform(maxError=maxError)
else:
try:
geometry = ee_object.geometry(maxError=maxError).transform(
maxError=maxError
)
except Exception:
raise Exception(
"ee_object must be an instance of one of ee.Geometry, ee.FeatureCollection, ee.Image, or ee.ImageCollection."
)
if zoom is not None:
if not isinstance(zoom, int):
raise Exception("Zoom must be an integer.")
else:
centroid = geometry.centroid(maxError=maxError).getInfo()["coordinates"]
lat = centroid[1]
lon = centroid[0]
self.set_center(lon, lat, zoom)
if is_arcpy():
arc_zoom_to_extent(lon, lat, lon, lat)
else:
coordinates = geometry.bounds(maxError).getInfo()["coordinates"][0]
x = [c[0] for c in coordinates]
y = [c[1] for c in coordinates]
xmin = min(x)
xmax = max(x)
ymin = min(y)
ymax = max(y)
bounds = [[ymin, xmin], [ymax, xmax]]
self.fit_bounds(bounds)
if is_arcpy():
arc_zoom_to_extent(xmin, ymin, xmax, ymax)
create_vis_widget(self, layer_dict)
¶
Create a GUI for changing layer visualization parameters interactively.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
layer_dict |
dict |
A dict containning information about the layer. It is an element from Map.ee_layer_dict. |
required |
Returns:
Type | Description |
---|---|
object |
An ipywidget. |
Source code in geemap/geemap.py
def create_vis_widget(self, layer_dict):
"""Create a GUI for changing layer visualization parameters interactively.
Args:
layer_dict (dict): A dict containning information about the layer. It is an element from Map.ee_layer_dict.
Returns:
object: An ipywidget.
"""
import matplotlib as mpl
import matplotlib.pyplot as plt
ee_object = layer_dict["ee_object"]
if isinstance(ee_object, ee.Geometry) or isinstance(ee_object, ee.Feature):
ee_object = ee.FeatureCollection(ee_object)
ee_layer = layer_dict["ee_layer"]
vis_params = layer_dict["vis_params"]
layer_name = ee_layer.name
layer_opacity = ee_layer.opacity
band_names = None
min_value = 0
max_value = 100
sel_bands = None
layer_palette = []
layer_gamma = 1
left_value = 0
right_value = 10000
max_width = "270px"
self._colorbar_widget = widgets.Output(
layout=widgets.Layout(height="60px", max_width=max_width)
)
self._colorbar_ctrl = ipyleaflet.WidgetControl(
widget=self._colorbar_widget, position="bottomright"
)
self.add(self._colorbar_ctrl)
# def vdir(obj): # Get branca colormap list
# return [x for x in dir(obj) if not x.startswith("_")]
if isinstance(ee_object, ee.Image):
band_names = ee_object.bandNames().getInfo()
band_count = len(band_names)
if "min" in vis_params.keys():
min_value = vis_params["min"]
if min_value < left_value:
left_value = min_value - max_value
if "max" in vis_params.keys():
max_value = vis_params["max"]
right_value = 2 * max_value
if "gamma" in vis_params.keys():
layer_gamma = vis_params["gamma"]
if "bands" in vis_params.keys():
sel_bands = vis_params["bands"]
if "palette" in vis_params.keys():
layer_palette = [
color.replace("#", "") for color in list(vis_params["palette"])
]
vis_widget = widgets.VBox(
layout=widgets.Layout(padding="5px 5px 5px 8px", width="330px")
)
label = widgets.Label(value=f"{layer_name} visualization parameters")
radio1 = widgets.RadioButtons(
options=["1 band (Grayscale)"], layout={"width": "max-content"}
)
radio2 = widgets.RadioButtons(
options=["3 bands (RGB)"], layout={"width": "max-content"}
)
radio1.index = None
radio2.index = None
dropdown_width = "98px"
band1_dropdown = widgets.Dropdown(
options=band_names,
value=band_names[0],
layout=widgets.Layout(width=dropdown_width),
)
band2_dropdown = widgets.Dropdown(
options=band_names,
value=band_names[0],
layout=widgets.Layout(width=dropdown_width),
)
band3_dropdown = widgets.Dropdown(
options=band_names,
value=band_names[0],
layout=widgets.Layout(width=dropdown_width),
)
bands_hbox = widgets.HBox()
legend_chk = widgets.Checkbox(
value=False,
description="Legend",
indent=False,
layout=widgets.Layout(width="70px"),
)
color_picker = widgets.ColorPicker(
concise=False,
value="#000000",
layout=widgets.Layout(width="116px"),
style={"description_width": "initial"},
)
add_color = widgets.Button(
icon="plus",
tooltip="Add a hex color string to the palette",
layout=widgets.Layout(width="32px"),
)
del_color = widgets.Button(
icon="minus",
tooltip="Remove a hex color string from the palette",
layout=widgets.Layout(width="32px"),
)
reset_color = widgets.Button(
icon="eraser",
tooltip="Remove all color strings from the palette",
layout=widgets.Layout(width="34px"),
)
classes = widgets.Dropdown(
options=["Any"] + [str(i) for i in range(3, 13)],
description="Classes:",
layout=widgets.Layout(width="115px"),
style={"description_width": "initial"},
)
colormap_options = plt.colormaps()
colormap_options.sort()
colormap = widgets.Dropdown(
options=colormap_options,
value=None,
description="Colormap:",
layout=widgets.Layout(width="181px"),
style={"description_width": "initial"},
)
def classes_changed(change):
if change["new"]:
selected = change["owner"].value
if colormap.value is not None:
n_class = None
if selected != "Any":
n_class = int(classes.value)
colors = plt.cm.get_cmap(colormap.value, n_class)
cmap_colors = [
mpl.colors.rgb2hex(colors(i))[1:] for i in range(colors.N)
]
_, ax = plt.subplots(figsize=(3, 0.3))
cmap = mpl.colors.LinearSegmentedColormap.from_list(
"custom", to_hex_colors(cmap_colors), N=256
)
norm = mpl.colors.Normalize(
vmin=value_range.value[0], vmax=value_range.value[1]
)
mpl.colorbar.ColorbarBase(
ax, norm=norm, cmap=cmap, orientation="horizontal"
)
palette.value = ", ".join([color for color in cmap_colors])
if self._colorbar_widget is None:
self._colorbar_widget = widgets.Output(
layout=widgets.Layout(
height="60px", max_width=max_width
)
)
if (not hasattr(self, "_colorbar_ctrl")) or (
self._colorbar_ctrl is None
):
self._colorbar_ctrl = ipyleaflet.WidgetControl(
widget=self._colorbar_widget, position="bottomright"
)
self.add(self._colorbar_ctrl)
colorbar_output = self._colorbar_widget
with colorbar_output:
colorbar_output.outputs = ()
plt.show()
if len(palette.value) > 0 and "," in palette.value:
labels = [
f"Class {i+1}"
for i in range(len(palette.value.split(",")))
]
legend_labels.value = ", ".join(labels)
classes.observe(classes_changed, "value")
palette = widgets.Text(
value=", ".join(layer_palette),
placeholder="List of hex color code (RRGGBB)",
description="Palette:",
tooltip="Enter a list of hex color code (RRGGBB)",
layout=widgets.Layout(width="300px"),
style={"description_width": "initial"},
)
def add_color_clicked(b):
if color_picker.value is not None:
if len(palette.value) == 0:
palette.value = color_picker.value[1:]
else:
palette.value += ", " + color_picker.value[1:]
def del_color_clicked(b):
if "," in palette.value:
items = [item.strip() for item in palette.value.split(",")]
palette.value = ", ".join(items[:-1])
else:
palette.value = ""
def reset_color_clicked(b):
palette.value = ""
add_color.on_click(add_color_clicked)
del_color.on_click(del_color_clicked)
reset_color.on_click(reset_color_clicked)
spacer = widgets.Label(layout=widgets.Layout(width="5px"))
v_spacer = widgets.Label(layout=widgets.Layout(height="5px"))
radio_btn = widgets.HBox([radio1, spacer, spacer, spacer, radio2])
value_range = widgets.FloatRangeSlider(
value=[min_value, max_value],
min=left_value,
max=right_value,
step=0.1,
description="Range:",
disabled=False,
continuous_update=False,
readout=True,
readout_format=".1f",
layout=widgets.Layout(width="300px"),
style={"description_width": "45px"},
)
range_hbox = widgets.HBox([value_range, spacer])
opacity = widgets.FloatSlider(
value=layer_opacity,
min=0,
max=1,
step=0.01,
description="Opacity:",
continuous_update=False,
readout=True,
readout_format=".2f",
layout=widgets.Layout(width="320px"),
style={"description_width": "50px"},
)
gamma = widgets.FloatSlider(
value=layer_gamma,
min=0.1,
max=10,
step=0.01,
description="Gamma:",
continuous_update=False,
readout=True,
readout_format=".2f",
layout=widgets.Layout(width="320px"),
style={"description_width": "50px"},
)
legend_chk = widgets.Checkbox(
value=False,
description="Legend",
indent=False,
layout=widgets.Layout(width="70px"),
)
linear_chk = widgets.Checkbox(
value=True,
description="Linear colormap",
indent=False,
layout=widgets.Layout(width="150px"),
)
step_chk = widgets.Checkbox(
value=False,
description="Step colormap",
indent=False,
layout=widgets.Layout(width="140px"),
)
legend_title = widgets.Text(
value="Legend",
description="Legend title:",
tooltip="Enter a title for the legend",
layout=widgets.Layout(width="300px"),
style={"description_width": "initial"},
)
legend_labels = widgets.Text(
value="Class 1, Class 2, Class 3",
description="Legend labels:",
tooltip="Enter a a list of labels for the legend",
layout=widgets.Layout(width="300px"),
style={"description_width": "initial"},
)
colormap_hbox = widgets.HBox([linear_chk, step_chk])
legend_vbox = widgets.VBox()
def linear_chk_changed(change):
if change["new"]:
step_chk.value = False
legend_vbox.children = [colormap_hbox]
else:
step_chk.value = True
def step_chk_changed(change):
if change["new"]:
linear_chk.value = False
if len(layer_palette) > 0:
legend_labels.value = ",".join(
[
"Class " + str(i)
for i in range(1, len(layer_palette) + 1)
]
)
legend_vbox.children = [
colormap_hbox,
legend_title,
legend_labels,
]
else:
linear_chk.value = True
linear_chk.observe(linear_chk_changed, "value")
step_chk.observe(step_chk_changed, "value")
def colormap_changed(change):
if change["new"]:
n_class = None
if classes.value != "Any":
n_class = int(classes.value)
colors = plt.cm.get_cmap(colormap.value, n_class)
cmap_colors = [
mpl.colors.rgb2hex(colors(i))[1:] for i in range(colors.N)
]
_, ax = plt.subplots(figsize=(3, 0.3))
cmap = mpl.colors.LinearSegmentedColormap.from_list(
"custom", to_hex_colors(cmap_colors), N=256
)
norm = mpl.colors.Normalize(
vmin=value_range.value[0], vmax=value_range.value[1]
)
mpl.colorbar.ColorbarBase(
ax, norm=norm, cmap=cmap, orientation="horizontal"
)
palette.value = ", ".join(cmap_colors)
if self._colorbar_widget is None:
self._colorbar_widget = widgets.Output(
layout=widgets.Layout(height="60px", max_width="270px")
)
if (
not hasattr(self, "_colorbar_ctrl")
) or self._colorbar_ctrl is None:
self._colorbar_ctrl = ipyleaflet.WidgetControl(
widget=self._colorbar_widget, position="bottomright"
)
self.add(self._colorbar_ctrl)
colorbar_output = self._colorbar_widget
with colorbar_output:
colorbar_output.outputs = ()
plt.show()
# display(colorbar)
if len(palette.value) > 0 and "," in palette.value:
labels = [
f"Class {i+1}" for i in range(len(palette.value.split(",")))
]
legend_labels.value = ", ".join(labels)
colormap.observe(colormap_changed, "value")
btn_width = "97.5px"
import_btn = widgets.Button(
description="Import",
button_style="primary",
tooltip="Import vis params to notebook",
layout=widgets.Layout(width=btn_width),
)
apply_btn = widgets.Button(
description="Apply",
tooltip="Apply vis params to the layer",
layout=widgets.Layout(width=btn_width),
)
close_btn = widgets.Button(
description="Close",
tooltip="Close vis params diaglog",
layout=widgets.Layout(width=btn_width),
)
def import_btn_clicked(b):
vis = {}
if radio1.index == 0:
vis["bands"] = [band1_dropdown.value]
if len(palette.value) > 0:
vis["palette"] = palette.value.split(",")
else:
vis["bands"] = [
band1_dropdown.value,
band2_dropdown.value,
band3_dropdown.value,
]
vis["min"] = value_range.value[0]
vis["max"] = value_range.value[1]
vis["opacity"] = opacity.value
vis["gamma"] = gamma.value
create_code_cell(f"vis_params = {str(vis)}")
def apply_btn_clicked(b):
vis = {}
if radio1.index == 0:
vis["bands"] = [band1_dropdown.value]
if len(palette.value) > 0:
vis["palette"] = [c.strip() for c in palette.value.split(",")]
else:
vis["bands"] = [
band1_dropdown.value,
band2_dropdown.value,
band3_dropdown.value,
]
vis["gamma"] = gamma.value
vis["min"] = value_range.value[0]
vis["max"] = value_range.value[1]
self.addLayer(ee_object, vis, layer_name, True, opacity.value)
ee_layer.visible = False
if legend_chk.value:
if (
hasattr(self, "_colorbar_ctrl")
and (self._colorbar_ctrl is not None)
and (self._colorbar_ctrl in self.controls)
):
self.remove_control(self._colorbar_ctrl)
self._colorbar_ctrl.close()
self._colorbar_widget.close()
if (
"colorbar" in layer_dict.keys()
and layer_dict["colorbar"] in self.controls
):
self.remove_control(layer_dict["colorbar"])
layer_dict["colorbar"] = None
if linear_chk.value:
if (
"legend" in layer_dict.keys()
and layer_dict["legend"] in self.controls
):
self.remove_control(layer_dict["legend"])
layer_dict["legend"] = None
if len(palette.value) > 0 and "," in palette.value:
colors = to_hex_colors(
[color.strip() for color in palette.value.split(",")]
)
self.add_colorbar(
vis_params={
"palette": colors,
"min": value_range.value[0],
"max": value_range.value[1],
},
layer_name=layer_name,
)
elif step_chk.value:
if len(palette.value) > 0 and "," in palette.value:
colors = to_hex_colors(
[color.strip() for color in palette.value.split(",")]
)
labels = [
label.strip()
for label in legend_labels.value.split(",")
]
self.add_legend(
title=legend_title.value,
legend_keys=labels,
legend_colors=colors,
layer_name=layer_name,
)
else:
if radio1.index == 0 and "palette" in vis:
self._colorbar_widget.outputs = ()
with self._colorbar_widget:
_, ax = plt.subplots(figsize=(3, 0.3))
colors = to_hex_colors(vis["palette"])
cmap = mpl.colors.LinearSegmentedColormap.from_list(
"custom", colors, N=256
)
norm = mpl.colors.Normalize(
vmin=vis["min"], vmax=vis["max"]
)
mpl.colorbar.ColorbarBase(
ax, norm=norm, cmap=cmap, orientation="horizontal"
)
plt.show()
if (
"colorbar" in layer_dict.keys()
and layer_dict["colorbar"] in self.controls
):
self.remove_control(layer_dict["colorbar"])
layer_dict["colorbar"] = None
if (
"legend" in layer_dict.keys()
and layer_dict["legend"] in self.controls
):
self.remove_control(layer_dict["legend"])
layer_dict["legend"] = None
def close_btn_clicked(b):
if self._vis_control in self.controls:
self.remove_control(self._vis_control)
self._vis_control = None
self._vis_widget.close()
if (
hasattr(self, "_colorbar_ctrl")
and (self._colorbar_ctrl is not None)
and (self._colorbar_ctrl in self.controls)
):
self.remove_control(self._colorbar_ctrl)
self._colorbar_ctrl = None
self._colorbar_widget.close()
import_btn.on_click(import_btn_clicked)
apply_btn.on_click(apply_btn_clicked)
close_btn.on_click(close_btn_clicked)
color_hbox = widgets.HBox(
[legend_chk, color_picker, add_color, del_color, reset_color]
)
btn_hbox = widgets.HBox([import_btn, apply_btn, close_btn])
gray_box = [
label,
radio_btn,
bands_hbox,
v_spacer,
range_hbox,
opacity,
gamma,
widgets.HBox([classes, colormap]),
palette,
color_hbox,
legend_vbox,
btn_hbox,
]
rgb_box = [
label,
radio_btn,
bands_hbox,
v_spacer,
range_hbox,
opacity,
gamma,
btn_hbox,
]
def legend_chk_changed(change):
if change["new"]:
linear_chk.value = True
legend_vbox.children = [
widgets.HBox([linear_chk, step_chk]),
# legend_title,
# legend_labels,
]
else:
legend_vbox.children = []
legend_chk.observe(legend_chk_changed, "value")
if band_count < 3:
radio1.index = 0
band1_dropdown.layout.width = "300px"
bands_hbox.children = [band1_dropdown]
vis_widget.children = gray_box
legend_chk.value = False
if len(palette.value) > 0 and "," in palette.value:
import matplotlib as mpl
import matplotlib.pyplot as plt
colors = to_hex_colors(
[color.strip() for color in palette.value.split(",")]
)
self._colorbar_widget.outputs = ()
with self._colorbar_widget:
_, ax = plt.subplots(figsize=(3, 0.3))
cmap = mpl.colors.LinearSegmentedColormap.from_list(
"custom", colors, N=256
)
norm = mpl.colors.Normalize(
vmin=value_range.value[0], vmax=value_range.value[1]
)
mpl.colorbar.ColorbarBase(
ax, norm=norm, cmap=cmap, orientation="horizontal"
)
plt.show()
else:
radio2.index = 0
if (sel_bands is None) or (len(sel_bands) < 2):
sel_bands = band_names[0:3]
band1_dropdown.value = sel_bands[0]
band2_dropdown.value = sel_bands[1]
band3_dropdown.value = sel_bands[2]
bands_hbox.children = [
band1_dropdown,
band2_dropdown,
band3_dropdown,
]
vis_widget.children = rgb_box
def radio1_observer(sender):
radio2.unobserve(radio2_observer, names=["value"])
radio2.index = None
radio2.observe(radio2_observer, names=["value"])
band1_dropdown.layout.width = "300px"
bands_hbox.children = [band1_dropdown]
palette.value = ", ".join(layer_palette)
palette.disabled = False
color_picker.disabled = False
add_color.disabled = False
del_color.disabled = False
reset_color.disabled = False
vis_widget.children = gray_box
if len(palette.value) > 0 and "," in palette.value:
colors = [color.strip() for color in palette.value.split(",")]
_, ax = plt.subplots(figsize=(3, 0.3))
cmap = mpl.colors.LinearSegmentedColormap.from_list(
"custom", to_hex_colors(colors), N=256
)
norm = mpl.colors.Normalize(vmin=0, vmax=1)
mpl.colorbar.ColorbarBase(
ax, norm=norm, cmap=cmap, orientation="horizontal"
)
self._colorbar_widget = widgets.Output(
layout=widgets.Layout(height="60px", max_width=max_width)
)
self._colorbar_ctrl = ipyleaflet.WidgetControl(
widget=self._colorbar_widget, position="bottomright"
)
if self._colorbar_ctrl not in self.controls:
self.add(self._colorbar_ctrl)
self._colorbar_widget.outputs = ()
with self._colorbar_widget:
plt.show()
def radio2_observer(sender):
radio1.unobserve(radio1_observer, names=["value"])
radio1.index = None
radio1.observe(radio1_observer, names=["value"])
band1_dropdown.layout.width = dropdown_width
bands_hbox.children = [
band1_dropdown,
band2_dropdown,
band3_dropdown,
]
palette.value = ""
palette.disabled = True
color_picker.disabled = True
add_color.disabled = True
del_color.disabled = True
reset_color.disabled = True
vis_widget.children = rgb_box
if (
self._colorbar_ctrl is not None
and self._colorbar_ctrl in self.controls
):
self.remove_control(self._colorbar_ctrl)
self._colorbar_ctrl.close()
self._colorbar_widget.close()
radio1.observe(radio1_observer, names=["value"])
radio2.observe(radio2_observer, names=["value"])
return vis_widget
elif isinstance(ee_object, ee.FeatureCollection):
vis_widget = widgets.VBox(
layout=widgets.Layout(padding="5px 5px 5px 8px", width="330px")
)
label = widgets.Label(value=f"{layer_name} visualization parameters")
new_layer_name = widgets.Text(
value=f"{layer_name} style",
description="New layer name:",
style={"description_width": "initial"},
)
color = widgets.ColorPicker(
concise=False,
value="#000000",
description="Color:",
layout=widgets.Layout(width="140px"),
style={"description_width": "initial"},
)
color_opacity = widgets.FloatSlider(
value=layer_opacity,
min=0,
max=1,
step=0.01,
description="Opacity:",
continuous_update=True,
readout=False,
# readout_format=".2f",
layout=widgets.Layout(width="130px"),
style={"description_width": "50px"},
)
color_opacity_label = widgets.Label(
style={"description_width": "initial"},
layout=widgets.Layout(padding="0px"),
)
def color_opacity_change(change):
color_opacity_label.value = str(change["new"])
color_opacity.observe(color_opacity_change, names="value")
point_size = widgets.IntText(
value=3,
description="Point size:",
layout=widgets.Layout(width="110px"),
style={"description_width": "initial"},
)
point_shape_options = [
"circle",
"square",
"diamond",
"cross",
"plus",
"pentagram",
"hexagram",
"triangle",
"triangle_up",
"triangle_down",
"triangle_left",
"triangle_right",
"pentagon",
"hexagon",
"star5",
"star6",
]
point_shape = widgets.Dropdown(
options=point_shape_options,
value="circle",
description="Point shape:",
layout=widgets.Layout(width="185px"),
style={"description_width": "initial"},
)
line_width = widgets.IntText(
value=2,
description="Line width:",
layout=widgets.Layout(width="110px"),
style={"description_width": "initial"},
)
line_type = widgets.Dropdown(
options=["solid", "dotted", "dashed"],
value="solid",
description="Line type:",
layout=widgets.Layout(width="185px"),
style={"description_width": "initial"},
)
fill_color = widgets.ColorPicker(
concise=False,
value="#000000",
description="Fill Color:",
layout=widgets.Layout(width="160px"),
style={"description_width": "initial"},
)
fill_color_opacity = widgets.FloatSlider(
value=0.66,
min=0,
max=1,
step=0.01,
description="Opacity:",
continuous_update=True,
readout=False,
# readout_format=".2f",
layout=widgets.Layout(width="110px"),
style={"description_width": "50px"},
)
fill_color_opacity_label = widgets.Label(
style={"description_width": "initial"},
layout=widgets.Layout(padding="0px"),
)
def fill_color_opacity_change(change):
fill_color_opacity_label.value = str(change["new"])
fill_color_opacity.observe(fill_color_opacity_change, names="value")
# widgets.jslink(
# (fill_color_opacity, "value"),
# (fill_color_opacity_label, "value"),
# )
color_picker = widgets.ColorPicker(
concise=False,
value="#000000",
layout=widgets.Layout(width="116px"),
style={"description_width": "initial"},
)
add_color = widgets.Button(
icon="plus",
tooltip="Add a hex color string to the palette",
layout=widgets.Layout(width="32px"),
)
del_color = widgets.Button(
icon="minus",
tooltip="Remove a hex color string from the palette",
layout=widgets.Layout(width="32px"),
)
reset_color = widgets.Button(
icon="eraser",
tooltip="Remove all color strings from the palette",
layout=widgets.Layout(width="34px"),
)
palette = widgets.Text(
value="",
placeholder="List of hex code (RRGGBB) separated by comma",
description="Palette:",
tooltip="Enter a list of hex code (RRGGBB) separated by comma",
layout=widgets.Layout(width="300px"),
style={"description_width": "initial"},
)
legend_title = widgets.Text(
value="Legend",
description="Legend title:",
tooltip="Enter a title for the legend",
layout=widgets.Layout(width="300px"),
style={"description_width": "initial"},
)
legend_labels = widgets.Text(
value="Labels",
description="Legend labels:",
tooltip="Enter a a list of labels for the legend",
layout=widgets.Layout(width="300px"),
style={"description_width": "initial"},
)
def add_color_clicked(b):
if color_picker.value is not None:
if len(palette.value) == 0:
palette.value = color_picker.value[1:]
else:
palette.value += ", " + color_picker.value[1:]
def del_color_clicked(b):
if "," in palette.value:
items = [item.strip() for item in palette.value.split(",")]
palette.value = ", ".join(items[:-1])
else:
palette.value = ""
def reset_color_clicked(b):
palette.value = ""
add_color.on_click(add_color_clicked)
del_color.on_click(del_color_clicked)
reset_color.on_click(reset_color_clicked)
field = widgets.Dropdown(
options=[],
value=None,
description="Field:",
layout=widgets.Layout(width="140px"),
style={"description_width": "initial"},
)
field_values = widgets.Dropdown(
options=[],
value=None,
description="Values:",
layout=widgets.Layout(width="156px"),
style={"description_width": "initial"},
)
classes = widgets.Dropdown(
options=["Any"] + [str(i) for i in range(3, 13)],
description="Classes:",
layout=widgets.Layout(width="115px"),
style={"description_width": "initial"},
)
colormap = widgets.Dropdown(
options=["viridis"],
value="viridis",
description="Colormap:",
layout=widgets.Layout(width="181px"),
style={"description_width": "initial"},
)
def classes_changed(change):
if change["new"]:
selected = change["owner"].value
if colormap.value is not None:
n_class = None
if selected != "Any":
n_class = int(classes.value)
colors = plt.cm.get_cmap(colormap.value, n_class)
cmap_colors = [
mpl.colors.rgb2hex(colors(i))[1:] for i in range(colors.N)
]
_, ax = plt.subplots(figsize=(3, 0.3))
cmap = mpl.colors.LinearSegmentedColormap.from_list(
"custom", to_hex_colors(cmap_colors), N=256
)
norm = mpl.colors.Normalize(vmin=0, vmax=1)
mpl.colorbar.ColorbarBase(
ax, norm=norm, cmap=cmap, orientation="horizontal"
)
palette.value = ", ".join([color for color in cmap_colors])
if self._colorbar_widget is None:
self._colorbar_widget = widgets.Output(
layout=widgets.Layout(
height="60px", max_width=max_width
)
)
if self._colorbar_ctrl is None:
self._colorbar_ctrl = ipyleaflet.WidgetControl(
widget=self._colorbar_widget, position="bottomright"
)
self.add(self._colorbar_ctrl)
colorbar_output = self._colorbar_widget
with colorbar_output:
colorbar_output.outputs = ()
plt.show()
if len(palette.value) > 0 and "," in palette.value:
labels = [
f"Class {i+1}"
for i in range(len(palette.value.split(",")))
]
legend_labels.value = ", ".join(labels)
classes.observe(classes_changed, "value")
def colormap_changed(change):
if change["new"]:
n_class = None
if classes.value != "Any":
n_class = int(classes.value)
colors = plt.cm.get_cmap(colormap.value, n_class)
cmap_colors = [
mpl.colors.rgb2hex(colors(i))[1:] for i in range(colors.N)
]
_, ax = plt.subplots(figsize=(3, 0.3))
cmap = mpl.colors.LinearSegmentedColormap.from_list(
"custom", to_hex_colors(cmap_colors), N=256
)
norm = mpl.colors.Normalize(vmin=0, vmax=1)
mpl.colorbar.ColorbarBase(
ax, norm=norm, cmap=cmap, orientation="horizontal"
)
palette.value = ", ".join(cmap_colors)
if self._colorbar_widget is None:
self._colorbar_widget = widgets.Output(
layout=widgets.Layout(height="60px", max_width=max_width)
)
if self._colorbar_ctrl is None:
self._colorbar_ctrl = ipyleaflet.WidgetControl(
widget=self._colorbar_widget, position="bottomright"
)
self.add(self._colorbar_ctrl)
colorbar_output = self._colorbar_widget
with colorbar_output:
colorbar_output.outputs = ()
plt.show()
# display(colorbar)
if len(palette.value) > 0 and "," in palette.value:
labels = [
f"Class {i+1}" for i in range(len(palette.value.split(",")))
]
legend_labels.value = ", ".join(labels)
colormap.observe(colormap_changed, "value")
btn_width = "97.5px"
import_btn = widgets.Button(
description="Import",
button_style="primary",
tooltip="Import vis params to notebook",
layout=widgets.Layout(width=btn_width),
)
apply_btn = widgets.Button(
description="Apply",
tooltip="Apply vis params to the layer",
layout=widgets.Layout(width=btn_width),
)
close_btn = widgets.Button(
description="Close",
tooltip="Close vis params diaglog",
layout=widgets.Layout(width=btn_width),
)
style_chk = widgets.Checkbox(
value=False,
description="Style by attribute",
indent=False,
layout=widgets.Layout(width="140px"),
)
legend_chk = widgets.Checkbox(
value=False,
description="Legend",
indent=False,
layout=widgets.Layout(width="70px"),
)
compute_label = widgets.Label(value="")
style_vbox = widgets.VBox([widgets.HBox([style_chk, compute_label])])
def style_chk_changed(change):
if change["new"]:
if (
hasattr(self, "_colorbar_ctrl")
and (self._colorbar_ctrl is not None)
and (self._colorbar_ctrl in self.controls)
):
self.remove_control(self._colorbar_ctrl)
self._colorbar_ctrl.close()
self._colorbar_widget.close()
self._colorbar_widget = widgets.Output(
layout=widgets.Layout(height="60px", max_width=max_width)
)
self._colorbar_ctrl = ipyleaflet.WidgetControl(
widget=self._colorbar_widget, position="bottomright"
)
self.add(self._colorbar_ctrl)
fill_color.disabled = True
colormap_options = plt.colormaps()
colormap_options.sort()
colormap.options = colormap_options
colormap.value = "viridis"
style_vbox.children = [
widgets.HBox([style_chk, compute_label]),
widgets.HBox([field, field_values]),
widgets.HBox([classes, colormap]),
palette,
widgets.HBox(
[
legend_chk,
color_picker,
add_color,
del_color,
reset_color,
]
),
]
compute_label.value = "Computing ..."
field.options = (
ee.Feature(ee_object.first()).propertyNames().getInfo()
)
compute_label.value = ""
classes.value = "Any"
legend_chk.value = False
else:
fill_color.disabled = False
style_vbox.children = [widgets.HBox([style_chk, compute_label])]
compute_label.value = ""
if (
hasattr(self, "_colorbar_ctrl")
and (self._colorbar_ctrl is not None)
and (self._colorbar_ctrl in self.controls)
):
self.remove_control(self._colorbar_ctrl)
self._colorbar_ctrl = None
self._colorbar_widget = None
# legend_chk.value = False
style_chk.observe(style_chk_changed, "value")
def legend_chk_changed(change):
if change["new"]:
style_vbox.children = list(style_vbox.children) + [
widgets.VBox([legend_title, legend_labels])
]
if len(palette.value) > 0 and "," in palette.value:
labels = [
f"Class {i+1}" for i in range(len(palette.value.split(",")))
]
legend_labels.value = ", ".join(labels)
else:
style_vbox.children = [
widgets.HBox([style_chk, compute_label]),
widgets.HBox([field, field_values]),
widgets.HBox([classes, colormap]),
palette,
widgets.HBox(
[
legend_chk,
color_picker,
add_color,
del_color,
reset_color,
]
),
]
legend_chk.observe(legend_chk_changed, "value")
def field_changed(change):
if change["new"]:
compute_label.value = "Computing ..."
options = ee_object.aggregate_array(field.value).getInfo()
if options is not None:
options = list(set(options))
options.sort()
field_values.options = options
compute_label.value = ""
field.observe(field_changed, "value")
def get_vis_params():
vis = {}
vis["color"] = color.value[1:] + str(
hex(int(color_opacity.value * 255))
)[2:].zfill(2)
if geometry_type(ee_object) in ["Point", "MultiPoint"]:
vis["pointSize"] = point_size.value
vis["pointShape"] = point_shape.value
vis["width"] = line_width.value
vis["lineType"] = line_type.value
vis["fillColor"] = fill_color.value[1:] + str(
hex(int(fill_color_opacity.value * 255))
)[2:].zfill(2)
return vis
def import_btn_clicked(b):
vis = get_vis_params()
create_code_cell(f"vis_params = {str(vis)}")
def apply_btn_clicked(b):
compute_label.value = "Computing ..."
if new_layer_name.value in self.ee_layer_names:
old_layer = new_layer_name.value
if "legend" in self.ee_layer_dict[old_layer].keys():
legend = self.ee_layer_dict[old_layer]["legend"]
if legend in self.controls:
self.remove_control(legend)
legend.close()
if "colorbar" in self.ee_layer_dict[old_layer].keys():
colorbar = self.ee_layer_dict[old_layer]["colorbar"]
if colorbar in self.controls:
self.remove_control(colorbar)
colorbar.close()
if not style_chk.value:
vis = get_vis_params()
self.addLayer(ee_object.style(**vis), {}, new_layer_name.value)
ee_layer.visible = False
elif (
style_chk.value and len(palette.value) > 0 and "," in palette.value
):
try:
colors = ee.List(
[
color.strip()
+ str(hex(int(fill_color_opacity.value * 255)))[
2:
].zfill(2)
for color in palette.value.split(",")
]
)
arr = ee_object.aggregate_array(field.value).distinct().sort()
fc = ee_object.map(
lambda f: f.set(
{"styleIndex": arr.indexOf(f.get(field.value))}
)
)
step = arr.size().divide(colors.size()).ceil()
fc = fc.map(
lambda f: f.set(
{
"style": {
"color": color.value[1:]
+ str(hex(int(color_opacity.value * 255)))[
2:
].zfill(2),
"pointSize": point_size.value,
"pointShape": point_shape.value,
"width": line_width.value,
"lineType": line_type.value,
"fillColor": colors.get(
ee.Number(
ee.Number(f.get("styleIndex")).divide(
step
)
).floor()
),
}
}
)
)
self.addLayer(
fc.style(**{"styleProperty": "style"}),
{},
f"{new_layer_name.value}",
)
if (
len(palette.value)
and legend_chk.value
and len(legend_labels.value) > 0
):
legend_colors = [
color.strip() for color in palette.value.split(",")
]
legend_keys = [
label.strip()
for label in legend_labels.value.split(",")
]
self.add_legend(
title=legend_title.value,
legend_keys=legend_keys,
legend_colors=legend_colors,
layer_name=new_layer_name.value,
)
except Exception as e:
compute_label.value = "Error: " + str(e)
ee_layer.visible = False
compute_label.value = ""
def close_btn_clicked(b):
self.remove_control(self._vis_control)
self._vis_control.close()
self._vis_widget.close()
if (
hasattr(self, "_colorbar_ctrl")
and (self._colorbar_ctrl is not None)
and (self._colorbar_ctrl in self.controls)
):
self.remove_control(self._colorbar_ctrl)
self._colorbar_ctrl.close()
self._colorbar_widget.close()
import_btn.on_click(import_btn_clicked)
apply_btn.on_click(apply_btn_clicked)
close_btn.on_click(close_btn_clicked)
vis_widget.children = [
label,
new_layer_name,
widgets.HBox([color, color_opacity, color_opacity_label]),
widgets.HBox([point_size, point_shape]),
widgets.HBox([line_width, line_type]),
widgets.HBox(
[fill_color, fill_color_opacity, fill_color_opacity_label]
),
style_vbox,
widgets.HBox([import_btn, apply_btn, close_btn]),
]
if geometry_type(ee_object) in ["Point", "MultiPoint"]:
point_size.disabled = False
point_shape.disabled = False
else:
point_size.disabled = True
point_shape.disabled = True
return vis_widget
draw_layer_on_top(self)
¶
Move user-drawn feature layer to the top of all layers.
Source code in geemap/geemap.py
def draw_layer_on_top(self):
"""Move user-drawn feature layer to the top of all layers."""
draw_layer_index = self.find_layer_index(name="Drawn Features")
if draw_layer_index > -1 and draw_layer_index < (len(self.layers) - 1):
layers = list(self.layers)
layers = (
layers[0:draw_layer_index]
+ layers[(draw_layer_index + 1) :]
+ [layers[draw_layer_index]]
)
self.layers = layers
extract_values_to_points(self, filename)
¶
Exports pixel values to a csv file based on user-drawn geometries.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename |
str |
The output file path to the csv file or shapefile. |
required |
Source code in geemap/geemap.py
def extract_values_to_points(self, filename):
"""Exports pixel values to a csv file based on user-drawn geometries.
Args:
filename (str): The output file path to the csv file or shapefile.
"""
import csv
filename = os.path.abspath(filename)
allowed_formats = ["csv", "shp"]
ext = filename[-3:]
if ext not in allowed_formats:
print(
"The output file must be one of the following: {}".format(
", ".join(allowed_formats)
)
)
return
out_dir = os.path.dirname(filename)
out_csv = filename[:-3] + "csv"
out_shp = filename[:-3] + "shp"
if not os.path.exists(out_dir):
os.makedirs(out_dir)
count = len(self._chart_points)
out_list = []
if count > 0:
header = ["id", "longitude", "latitude"] + self._chart_labels
out_list.append(header)
for i in range(0, count):
id = i + 1
line = [id] + self._chart_points[i] + self._chart_values[i]
out_list.append(line)
with open(out_csv, "w", newline="") as f:
writer = csv.writer(f)
writer.writerows(out_list)
if ext == "csv":
print(f"The csv file has been saved to: {out_csv}")
else:
csv_to_shp(out_csv, out_shp)
print(f"The shapefile has been saved to: {out_shp}")
find_layer(self, name)
¶
Finds layer by name
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str |
Name of the layer to find. |
required |
Returns:
Type | Description |
---|---|
object |
ipyleaflet layer object. |
Source code in geemap/geemap.py
def find_layer(self, name):
"""Finds layer by name
Args:
name (str): Name of the layer to find.
Returns:
object: ipyleaflet layer object.
"""
layers = self.layers
for layer in layers:
if layer.name == name:
return layer
return None
find_layer_index(self, name)
¶
Finds layer index by name
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str |
Name of the layer to find. |
required |
Returns:
Type | Description |
---|---|
int |
Index of the layer with the specified name |
Source code in geemap/geemap.py
def find_layer_index(self, name):
"""Finds layer index by name
Args:
name (str): Name of the layer to find.
Returns:
int: Index of the layer with the specified name
"""
layers = self.layers
for index, layer in enumerate(layers):
if layer.name == name:
return index
return -1
getBounds(self, asGeoJSON=False)
¶
Returns the bounds of the current map view, as a list in the format [west, south, east, north] in degrees.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
asGeoJSON |
bool |
If true, returns map bounds as GeoJSON. Defaults to False. |
False |
Returns:
Type | Description |
---|---|
list | dict |
A list in the format [west, south, east, north] in degrees. |
Source code in geemap/geemap.py
def get_bounds(self, asGeoJSON=False):
"""Returns the bounds of the current map view, as a list in the format [west, south, east, north] in degrees.
Args:
asGeoJSON (bool, optional): If true, returns map bounds as GeoJSON. Defaults to False.
Returns:
list | dict: A list in the format [west, south, east, north] in degrees.
"""
bounds = self.bounds
coords = [bounds[0][1], bounds[0][0], bounds[1][1], bounds[1][0]]
if asGeoJSON:
return ee.Geometry.BBox(
bounds[0][1], bounds[0][0], bounds[1][1], bounds[1][0]
).getInfo()
else:
return coords
getScale(self)
¶
Returns the approximate pixel scale of the current map view, in meters.
Returns:
Type | Description |
---|---|
float |
Map resolution in meters. |
Source code in geemap/geemap.py
def get_scale(self):
"""Returns the approximate pixel scale of the current map view, in meters.
Returns:
float: Map resolution in meters.
"""
import math
zoom_level = self.zoom
center_lat = self.center[0]
# Reference:
# - https://blogs.bing.com/maps/2006/02/25/map-control-zoom-levels-gt-resolution
# - https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames#Resolution_and_Scale
center_lat_cos = math.cos(math.radians(center_lat))
resolution = 156543.04 * center_lat_cos / math.pow(2, zoom_level)
return resolution
get_bounds(self, asGeoJSON=False)
¶
Returns the bounds of the current map view, as a list in the format [west, south, east, north] in degrees.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
asGeoJSON |
bool |
If true, returns map bounds as GeoJSON. Defaults to False. |
False |
Returns:
Type | Description |
---|---|
list | dict |
A list in the format [west, south, east, north] in degrees. |
Source code in geemap/geemap.py
def get_bounds(self, asGeoJSON=False):
"""Returns the bounds of the current map view, as a list in the format [west, south, east, north] in degrees.
Args:
asGeoJSON (bool, optional): If true, returns map bounds as GeoJSON. Defaults to False.
Returns:
list | dict: A list in the format [west, south, east, north] in degrees.
"""
bounds = self.bounds
coords = [bounds[0][1], bounds[0][0], bounds[1][1], bounds[1][0]]
if asGeoJSON:
return ee.Geometry.BBox(
bounds[0][1], bounds[0][0], bounds[1][1], bounds[1][0]
).getInfo()
else:
return coords
get_layer_names(self)
¶
Gets layer names as a list.
Returns:
Type | Description |
---|---|
list |
A list of layer names. |
Source code in geemap/geemap.py
def get_layer_names(self):
"""Gets layer names as a list.
Returns:
list: A list of layer names.
"""
layer_names = []
for layer in list(self.layers):
if len(layer.name) > 0:
layer_names.append(layer.name)
return layer_names
get_scale(self)
¶
Returns the approximate pixel scale of the current map view, in meters.
Returns:
Type | Description |
---|---|
float |
Map resolution in meters. |
Source code in geemap/geemap.py
def get_scale(self):
"""Returns the approximate pixel scale of the current map view, in meters.
Returns:
float: Map resolution in meters.
"""
import math
zoom_level = self.zoom
center_lat = self.center[0]
# Reference:
# - https://blogs.bing.com/maps/2006/02/25/map-control-zoom-levels-gt-resolution
# - https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames#Resolution_and_Scale
center_lat_cos = math.cos(math.radians(center_lat))
resolution = 156543.04 * center_lat_cos / math.pow(2, zoom_level)
return resolution
image_overlay(self, url, bounds, name)
¶
Overlays an image from the Internet or locally on the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url |
str |
http URL or local file path to the image. |
required |
bounds |
tuple |
bounding box of the image in the format of (lower_left(lat, lon), upper_right(lat, lon)), such as ((13, -130), (32, -100)). |
required |
name |
str |
name of the layer to show on the layer control. |
required |
Source code in geemap/geemap.py
def image_overlay(self, url, bounds, name):
"""Overlays an image from the Internet or locally on the map.
Args:
url (str): http URL or local file path to the image.
bounds (tuple): bounding box of the image in the format of (lower_left(lat, lon), upper_right(lat, lon)), such as ((13, -130), (32, -100)).
name (str): name of the layer to show on the layer control.
"""
from base64 import b64encode
from io import BytesIO
from PIL import Image, ImageSequence
try:
if not url.startswith("http"):
if not os.path.exists(url):
print("The provided file does not exist.")
return
ext = os.path.splitext(url)[1][1:] # file extension
image = Image.open(url)
f = BytesIO()
if ext.lower() == "gif":
frames = []
# Loop over each frame in the animated image
for frame in ImageSequence.Iterator(image):
frame = frame.convert("RGBA")
b = BytesIO()
frame.save(b, format="gif")
frame = Image.open(b)
frames.append(frame)
frames[0].save(
f,
format="GIF",
save_all=True,
append_images=frames[1:],
loop=0,
)
else:
image.save(f, ext)
data = b64encode(f.getvalue())
data = data.decode("ascii")
url = "data:image/{};base64,".format(ext) + data
img = ipyleaflet.ImageOverlay(url=url, bounds=bounds, name=name)
self.add(img)
except Exception as e:
print(e)
inspect(self, latlon)
¶
Create the Inspector GUI.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
latlon |
list | tuple |
The coordinates (lat, lon) of the point. |
required |
Returns:
Type | Description |
---|---|
ipytree.Tree |
The ipytree tree widget for the Inspector GUI. |
Source code in geemap/geemap.py
def inspect(self, latlon):
"""Create the Inspector GUI.
Args:
latlon (list | tuple): The coordinates (lat, lon) of the point.
Returns:
ipytree.Tree: The ipytree tree widget for the Inspector GUI.
"""
from ipytree import Tree
tree = Tree()
nodes = []
point_node = self._point_info(latlon, return_node=True)
nodes.append(point_node)
pixels_node = self._pixels_info(latlon, return_node=True)
if pixels_node.nodes:
nodes.append(pixels_node)
objects_node = self._objects_info(latlon, return_node=True)
if objects_node.nodes:
nodes.append(objects_node)
tree.nodes = nodes
return tree
layer_opacity(self, name, opacity=1.0)
¶
Changes layer opacity.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str |
The name of the layer to change opacity. |
required |
opacity |
float |
The opacity value to set. Defaults to 1.0. |
1.0 |
Source code in geemap/geemap.py
def layer_opacity(self, name, opacity=1.0):
"""Changes layer opacity.
Args:
name (str): The name of the layer to change opacity.
opacity (float, optional): The opacity value to set. Defaults to 1.0.
"""
layer = self.find_layer(name)
try:
layer.opacity = opacity
except Exception as e:
raise Exception(e)
marker_cluster(self)
¶
Adds a marker cluster to the map and returns a list of ee.Feature, which can be accessed using Map.ee_marker_cluster.
Returns:
Type | Description |
---|---|
object |
a list of ee.Feature |
Source code in geemap/geemap.py
def marker_cluster(self):
"""Adds a marker cluster to the map and returns a list of ee.Feature, which can be accessed using Map.ee_marker_cluster.
Returns:
object: a list of ee.Feature
"""
coordinates = []
markers = []
marker_cluster = ipyleaflet.MarkerCluster(name="Marker Cluster")
self.last_click = []
self.all_clicks = []
self.ee_markers = []
self.add(marker_cluster)
def handle_interaction(**kwargs):
latlon = kwargs.get("coordinates")
if kwargs.get("type") == "click":
coordinates.append(latlon)
geom = ee.Geometry.Point(latlon[1], latlon[0])
feature = ee.Feature(geom)
self.ee_markers.append(feature)
self.last_click = latlon
self.all_clicks = coordinates
markers.append(ipyleaflet.Marker(location=latlon))
marker_cluster.markers = markers
elif kwargs.get("type") == "mousemove":
pass
# cursor style: https://www.w3schools.com/cssref/pr_class_cursor.asp
self.default_style = {"cursor": "crosshair"}
self.on_interaction(handle_interaction)
plot(self, x, y, plot_type=None, overlay=False, position='bottomright', min_width=None, max_width=None, min_height=None, max_height=None, **kwargs)
¶
Creates a plot based on x-array and y-array data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
numpy.ndarray or list |
The x-coordinates of the plotted line. |
required |
y |
numpy.ndarray or list |
The y-coordinates of the plotted line. |
required |
plot_type |
str |
The plot type can be one of "None", "bar", "scatter" or "hist". Defaults to None. |
None |
overlay |
bool |
Whether to overlay plotted lines on the figure. Defaults to False. |
False |
position |
str |
Position of the control, can be ‘bottomleft’, ‘bottomright’, ‘topleft’, or ‘topright’. Defaults to 'bottomright'. |
'bottomright' |
min_width |
int |
Min width of the widget (in pixels), if None it will respect the content size. Defaults to None. |
None |
max_width |
int |
Max width of the widget (in pixels), if None it will respect the content size. Defaults to None. |
None |
min_height |
int |
Min height of the widget (in pixels), if None it will respect the content size. Defaults to None. |
None |
max_height |
int |
Max height of the widget (in pixels), if None it will respect the content size. Defaults to None. |
None |
Source code in geemap/geemap.py
def plot(
self,
x,
y,
plot_type=None,
overlay=False,
position="bottomright",
min_width=None,
max_width=None,
min_height=None,
max_height=None,
**kwargs,
):
"""Creates a plot based on x-array and y-array data.
Args:
x (numpy.ndarray or list): The x-coordinates of the plotted line.
y (numpy.ndarray or list): The y-coordinates of the plotted line.
plot_type (str, optional): The plot type can be one of "None", "bar", "scatter" or "hist". Defaults to None.
overlay (bool, optional): Whether to overlay plotted lines on the figure. Defaults to False.
position (str, optional): Position of the control, can be ‘bottomleft’, ‘bottomright’, ‘topleft’, or ‘topright’. Defaults to 'bottomright'.
min_width (int, optional): Min width of the widget (in pixels), if None it will respect the content size. Defaults to None.
max_width (int, optional): Max width of the widget (in pixels), if None it will respect the content size. Defaults to None.
min_height (int, optional): Min height of the widget (in pixels), if None it will respect the content size. Defaults to None.
max_height (int, optional): Max height of the widget (in pixels), if None it will respect the content size. Defaults to None.
"""
if hasattr(self, "_plot_widget") and self._plot_widget is not None:
plot_widget = self._plot_widget
else:
plot_widget = widgets.Output(
layout={"border": "1px solid black", "max_width": "500px"}
)
plot_control = ipyleaflet.WidgetControl(
widget=plot_widget,
position=position,
min_width=min_width,
max_width=max_width,
min_height=min_height,
max_height=max_height,
)
self._plot_widget = plot_widget
self._plot_control = plot_control
self.add(plot_control)
if max_width is None:
max_width = 500
if max_height is None:
max_height = 300
if (plot_type is None) and ("markers" not in kwargs):
kwargs["markers"] = "circle"
with plot_widget:
try:
fig = plt.figure(1, **kwargs)
if max_width is not None:
fig.layout.width = str(max_width) + "px"
if max_height is not None:
fig.layout.height = str(max_height) + "px"
plot_widget.outputs = ()
if not overlay:
plt.clear()
if plot_type is None:
if "marker" not in kwargs:
kwargs["marker"] = "circle"
plt.plot(x, y, **kwargs)
elif plot_type == "bar":
plt.bar(x, y, **kwargs)
elif plot_type == "scatter":
plt.scatter(x, y, **kwargs)
elif plot_type == "hist":
plt.hist(y, **kwargs)
plt.show()
except Exception as e:
print("Failed to create plot.")
raise Exception(e)
plot_demo(self, iterations=20, plot_type=None, overlay=False, position='bottomright', min_width=None, max_width=None, min_height=None, max_height=None, **kwargs)
¶
A demo of interactive plotting using random pixel coordinates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
iterations |
int |
How many iterations to run for the demo. Defaults to 20. |
20 |
plot_type |
str |
The plot type can be one of "None", "bar", "scatter" or "hist". Defaults to None. |
None |
overlay |
bool |
Whether to overlay plotted lines on the figure. Defaults to False. |
False |
position |
str |
Position of the control, can be ‘bottomleft’, ‘bottomright’, ‘topleft’, or ‘topright’. Defaults to 'bottomright'. |
'bottomright' |
min_width |
int |
Min width of the widget (in pixels), if None it will respect the content size. Defaults to None. |
None |
max_width |
int |
Max width of the widget (in pixels), if None it will respect the content size. Defaults to None. |
None |
min_height |
int |
Min height of the widget (in pixels), if None it will respect the content size. Defaults to None. |
None |
max_height |
int |
Max height of the widget (in pixels), if None it will respect the content size. Defaults to None. |
None |
Source code in geemap/geemap.py
def plot_demo(
self,
iterations=20,
plot_type=None,
overlay=False,
position="bottomright",
min_width=None,
max_width=None,
min_height=None,
max_height=None,
**kwargs,
):
"""A demo of interactive plotting using random pixel coordinates.
Args:
iterations (int, optional): How many iterations to run for the demo. Defaults to 20.
plot_type (str, optional): The plot type can be one of "None", "bar", "scatter" or "hist". Defaults to None.
overlay (bool, optional): Whether to overlay plotted lines on the figure. Defaults to False.
position (str, optional): Position of the control, can be ‘bottomleft’, ‘bottomright’, ‘topleft’, or ‘topright’. Defaults to 'bottomright'.
min_width (int, optional): Min width of the widget (in pixels), if None it will respect the content size. Defaults to None.
max_width (int, optional): Max width of the widget (in pixels), if None it will respect the content size. Defaults to None.
min_height (int, optional): Min height of the widget (in pixels), if None it will respect the content size. Defaults to None.
max_height (int, optional): Max height of the widget (in pixels), if None it will respect the content size. Defaults to None.
"""
import numpy as np
import time
if hasattr(self, "random_marker") and self.random_marker is not None:
self.remove_layer(self.random_marker)
image = ee.Image("LANDSAT/LE7_TOA_5YEAR/1999_2003").select([0, 1, 2, 3, 4, 6])
self.addLayer(
image,
{"bands": ["B4", "B3", "B2"], "gamma": 1.4},
"LANDSAT/LE7_TOA_5YEAR/1999_2003",
)
self.setCenter(-50.078877, 25.190030, 3)
band_names = image.bandNames().getInfo()
# band_count = len(band_names)
latitudes = np.random.uniform(30, 48, size=iterations)
longitudes = np.random.uniform(-121, -76, size=iterations)
marker = ipyleaflet.Marker(location=(0, 0))
self.random_marker = marker
self.add(marker)
for i in range(iterations):
try:
coordinate = ee.Geometry.Point([longitudes[i], latitudes[i]])
dict_values = image.sample(coordinate).first().toDictionary().getInfo()
band_values = list(dict_values.values())
title = "{}/{}: Spectral signature at ({}, {})".format(
i + 1,
iterations,
round(latitudes[i], 2),
round(longitudes[i], 2),
)
marker.location = (latitudes[i], longitudes[i])
self.plot(
band_names,
band_values,
plot_type=plot_type,
overlay=overlay,
min_width=min_width,
max_width=max_width,
min_height=min_height,
max_height=max_height,
title=title,
**kwargs,
)
time.sleep(0.3)
except Exception as e:
raise Exception(e)
plot_raster(self, ee_object=None, sample_scale=None, plot_type=None, overlay=False, position='bottomright', min_width=None, max_width=None, min_height=None, max_height=None, **kwargs)
¶
Interactive plotting of Earth Engine data by clicking on the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ee_object |
object |
The ee.Image or ee.ImageCollection to sample. Defaults to None. |
None |
sample_scale |
float |
A nominal scale in meters of the projection to sample in. Defaults to None. |
None |
plot_type |
str |
The plot type can be one of "None", "bar", "scatter" or "hist". Defaults to None. |
None |
overlay |
bool |
Whether to overlay plotted lines on the figure. Defaults to False. |
False |
position |
str |
Position of the control, can be ‘bottomleft’, ‘bottomright’, ‘topleft’, or ‘topright’. Defaults to 'bottomright'. |
'bottomright' |
min_width |
int |
Min width of the widget (in pixels), if None it will respect the content size. Defaults to None. |
None |
max_width |
int |
Max width of the widget (in pixels), if None it will respect the content size. Defaults to None. |
None |
min_height |
int |
Min height of the widget (in pixels), if None it will respect the content size. Defaults to None. |
None |
max_height |
int |
Max height of the widget (in pixels), if None it will respect the content size. Defaults to None. |
None |
Source code in geemap/geemap.py
def plot_raster(
self,
ee_object=None,
sample_scale=None,
plot_type=None,
overlay=False,
position="bottomright",
min_width=None,
max_width=None,
min_height=None,
max_height=None,
**kwargs,
):
"""Interactive plotting of Earth Engine data by clicking on the map.
Args:
ee_object (object, optional): The ee.Image or ee.ImageCollection to sample. Defaults to None.
sample_scale (float, optional): A nominal scale in meters of the projection to sample in. Defaults to None.
plot_type (str, optional): The plot type can be one of "None", "bar", "scatter" or "hist". Defaults to None.
overlay (bool, optional): Whether to overlay plotted lines on the figure. Defaults to False.
position (str, optional): Position of the control, can be ‘bottomleft’, ‘bottomright’, ‘topleft’, or ‘topright’. Defaults to 'bottomright'.
min_width (int, optional): Min width of the widget (in pixels), if None it will respect the content size. Defaults to None.
max_width (int, optional): Max width of the widget (in pixels), if None it will respect the content size. Defaults to None.
min_height (int, optional): Min height of the widget (in pixels), if None it will respect the content size. Defaults to None.
max_height (int, optional): Max height of the widget (in pixels), if None it will respect the content size. Defaults to None.
"""
if hasattr(self, "_plot_control") and self._plot_control is not None:
del self._plot_widget
if self._plot_control in self.controls:
self.remove_control(self._plot_control)
if hasattr(self, "random_marker") and self.random_marker is not None:
self.remove_layer(self.random_marker)
plot_widget = widgets.Output(layout={"border": "1px solid black"})
plot_control = ipyleaflet.WidgetControl(
widget=plot_widget,
position=position,
min_width=min_width,
max_width=max_width,
min_height=min_height,
max_height=max_height,
)
self._plot_widget = plot_widget
self._plot_control = plot_control
self.add(plot_control)
self.default_style = {"cursor": "crosshair"}
msg = "The plot function can only be used on ee.Image or ee.ImageCollection with more than one band."
if (ee_object is None) and len(self.ee_raster_layers) > 0:
ee_object = self.ee_raster_layers[-1]
if isinstance(ee_object, ee.ImageCollection):
ee_object = ee_object.mosaic()
elif isinstance(ee_object, ee.ImageCollection):
ee_object = ee_object.mosaic()
elif not isinstance(ee_object, ee.Image):
print(msg)
return
if sample_scale is None:
sample_scale = self.getScale()
if max_width is None:
max_width = 500
band_names = ee_object.bandNames().getInfo()
coordinates = []
markers = []
marker_cluster = ipyleaflet.MarkerCluster(name="Marker Cluster")
self.last_click = []
self.all_clicks = []
self.add(marker_cluster)
def handle_interaction(**kwargs2):
latlon = kwargs2.get("coordinates")
if kwargs2.get("type") == "click":
try:
coordinates.append(latlon)
self.last_click = latlon
self.all_clicks = coordinates
markers.append(ipyleaflet.Marker(location=latlon))
marker_cluster.markers = markers
self.default_style = {"cursor": "wait"}
xy = ee.Geometry.Point(latlon[::-1])
dict_values = (
ee_object.sample(xy, scale=sample_scale)
.first()
.toDictionary()
.getInfo()
)
band_values = list(dict_values.values())
self.plot(
band_names,
band_values,
plot_type=plot_type,
overlay=overlay,
min_width=min_width,
max_width=max_width,
min_height=min_height,
max_height=max_height,
**kwargs,
)
self.default_style = {"cursor": "crosshair"}
except Exception as e:
if self._plot_widget is not None:
with self._plot_widget:
self._plot_widget.outputs = ()
print("No data for the clicked location.")
else:
print(e)
self.default_style = {"cursor": "crosshair"}
self.on_interaction(handle_interaction)
remove_colorbar(self)
¶
Remove colorbar from the map.
Source code in geemap/geemap.py
def remove_colorbar(self):
"""Remove colorbar from the map."""
if hasattr(self, "_colorbar") and self._colorbar is not None:
self.remove_control(self._colorbar)
remove_colorbars(self)
¶
Remove all colorbars from the map.
Source code in geemap/geemap.py
def remove_colorbars(self):
"""Remove all colorbars from the map."""
if hasattr(self, "colorbars"):
for colorbar in self.colorbars:
if colorbar in self.controls:
self.remove_control(colorbar)
remove_drawn_features(self)
¶
Removes user-drawn geometries from the map
Source code in geemap/geemap.py
def remove_drawn_features(self):
"""Removes user-drawn geometries from the map"""
if self.draw_layer is not None:
self.remove_layer(self.draw_layer)
self._draw_count = 0
self.draw_features = []
self.draw_last_feature = None
self.draw_layer = None
self.user_roi = None
self.user_rois = None
self._chart_values = []
self._chart_points = []
self._chart_labels = None
if self.draw_control is not None:
self.draw_control.clear()
remove_ee_layer(self, name)
¶
Removes an Earth Engine layer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str |
The name of the Earth Engine layer to remove. |
required |
Source code in geemap/geemap.py
def remove_ee_layer(self, name):
"""Removes an Earth Engine layer.
Args:
name (str): The name of the Earth Engine layer to remove.
"""
if name in self.ee_layer_dict:
ee_object = self.ee_layer_dict[name]["ee_object"]
ee_layer = self.ee_layer_dict[name]["ee_layer"]
if name in self.ee_raster_layer_names:
self.ee_raster_layer_names.remove(name)
self.ee_raster_layers.remove(ee_object)
elif name in self.ee_vector_layer_names:
self.ee_vector_layer_names.remove(name)
self.ee_vector_layers.remove(ee_object)
self.ee_layers.remove(ee_object)
self.ee_layer_names.remove(name)
if ee_layer in self.layers:
self.remove_layer(ee_layer)
remove_labels(self)
¶
Removes all labels from the map.
Source code in geemap/geemap.py
def remove_labels(self):
"""Removes all labels from the map."""
if hasattr(self, "labels"):
self.remove_layer(self.labels)
delattr(self, "labels")
remove_last_drawn(self)
¶
Removes user-drawn geometries from the map
Source code in geemap/geemap.py
def remove_last_drawn(self):
"""Removes user-drawn geometries from the map"""
if self.draw_layer is not None:
collection = ee.FeatureCollection(self.draw_features[:-1])
ee_draw_layer = EELeafletTileLayer(
collection, {"color": "blue"}, "Drawn Features", True, 0.5
)
if self._draw_count == 1:
self.remove_drawn_features()
else:
self.substitute_layer(self.draw_layer, ee_draw_layer)
self.draw_layer = ee_draw_layer
self._draw_count -= 1
self.draw_features = self.draw_features[:-1]
self.draw_last_feature = self.draw_features[-1]
self.draw_layer = ee_draw_layer
self.user_roi = ee.Feature(
collection.toList(collection.size()).get(
collection.size().subtract(1)
)
).geometry()
self.user_rois = collection
self._chart_values = self._chart_values[:-1]
self._chart_points = self._chart_points[:-1]
# self._chart_labels = None
remove_legend(self)
¶
Remove legend from the map.
Source code in geemap/geemap.py
def remove_legend(self):
"""Remove legend from the map."""
if hasattr(self, "_legend") and self._legend is not None:
if self._legend in self.controls:
self.remove_control(self._legend)
remove_legends(self)
¶
Remove all legends from the map.
Source code in geemap/geemap.py
def remove_legends(self):
"""Remove all legends from the map."""
if hasattr(self, "legends"):
for legend in self.legends:
if legend in self.controls:
self.remove_control(legend)
setCenter(self, lon, lat, zoom=None)
¶
Centers the map view at a given coordinates with the given zoom level.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lon |
float |
The longitude of the center, in degrees. |
required |
lat |
float |
The latitude of the center, in degrees. |
required |
zoom |
int |
The zoom level, from 1 to 24. Defaults to None. |
None |
Source code in geemap/geemap.py
def set_center(self, lon, lat, zoom=None):
"""Centers the map view at a given coordinates with the given zoom level.
Args:
lon (float): The longitude of the center, in degrees.
lat (float): The latitude of the center, in degrees.
zoom (int, optional): The zoom level, from 1 to 24. Defaults to None.
"""
self.center = (lat, lon)
if zoom is not None:
self.zoom = zoom
if is_arcpy():
arc_zoom_to_extent(lon, lat, lon, lat)
setControlVisibility(self, layerControl=True, fullscreenControl=True, latLngPopup=True)
¶
Sets the visibility of the controls on the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
layerControl |
bool |
Whether to show the control that allows the user to toggle layers on/off. Defaults to True. |
True |
fullscreenControl |
bool |
Whether to show the control that allows the user to make the map full-screen. Defaults to True. |
True |
latLngPopup |
bool |
Whether to show the control that pops up the Lat/lon when the user clicks on the map. Defaults to True. |
True |
Source code in geemap/geemap.py
def set_control_visibility(
self, layerControl=True, fullscreenControl=True, latLngPopup=True
):
"""Sets the visibility of the controls on the map.
Args:
layerControl (bool, optional): Whether to show the control that allows the user to toggle layers on/off. Defaults to True.
fullscreenControl (bool, optional): Whether to show the control that allows the user to make the map full-screen. Defaults to True.
latLngPopup (bool, optional): Whether to show the control that pops up the Lat/lon when the user clicks on the map. Defaults to True.
"""
pass
setOptions(self, mapTypeId='HYBRID', **kwargs)
¶
Adds Google basemap and controls to the ipyleaflet map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mapTypeId |
str |
A mapTypeId to set the basemap to. Can be one of "ROADMAP", "SATELLITE", "HYBRID" or "TERRAIN" to select one of the standard Google Maps API map types. Defaults to 'HYBRID'. |
'HYBRID' |
Source code in geemap/geemap.py
def set_options(self, mapTypeId="HYBRID", **kwargs):
"""Adds Google basemap and controls to the ipyleaflet map.
Args:
mapTypeId (str, optional): A mapTypeId to set the basemap to. Can be one of "ROADMAP", "SATELLITE",
"HYBRID" or "TERRAIN" to select one of the standard Google Maps API map types. Defaults to 'HYBRID'.
"""
try:
self.add(mapTypeId)
except Exception:
raise ValueError(
'Google basemaps can only be one of "ROADMAP", "SATELLITE", "HYBRID" or "TERRAIN".'
)
set_center(self, lon, lat, zoom=None)
¶
Centers the map view at a given coordinates with the given zoom level.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
lon |
float |
The longitude of the center, in degrees. |
required |
lat |
float |
The latitude of the center, in degrees. |
required |
zoom |
int |
The zoom level, from 1 to 24. Defaults to None. |
None |
Source code in geemap/geemap.py
def set_center(self, lon, lat, zoom=None):
"""Centers the map view at a given coordinates with the given zoom level.
Args:
lon (float): The longitude of the center, in degrees.
lat (float): The latitude of the center, in degrees.
zoom (int, optional): The zoom level, from 1 to 24. Defaults to None.
"""
self.center = (lat, lon)
if zoom is not None:
self.zoom = zoom
if is_arcpy():
arc_zoom_to_extent(lon, lat, lon, lat)
set_control_visibility(self, layerControl=True, fullscreenControl=True, latLngPopup=True)
¶
Sets the visibility of the controls on the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
layerControl |
bool |
Whether to show the control that allows the user to toggle layers on/off. Defaults to True. |
True |
fullscreenControl |
bool |
Whether to show the control that allows the user to make the map full-screen. Defaults to True. |
True |
latLngPopup |
bool |
Whether to show the control that pops up the Lat/lon when the user clicks on the map. Defaults to True. |
True |
Source code in geemap/geemap.py
def set_control_visibility(
self, layerControl=True, fullscreenControl=True, latLngPopup=True
):
"""Sets the visibility of the controls on the map.
Args:
layerControl (bool, optional): Whether to show the control that allows the user to toggle layers on/off. Defaults to True.
fullscreenControl (bool, optional): Whether to show the control that allows the user to make the map full-screen. Defaults to True.
latLngPopup (bool, optional): Whether to show the control that pops up the Lat/lon when the user clicks on the map. Defaults to True.
"""
pass
set_options(self, mapTypeId='HYBRID', **kwargs)
¶
Adds Google basemap and controls to the ipyleaflet map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mapTypeId |
str |
A mapTypeId to set the basemap to. Can be one of "ROADMAP", "SATELLITE", "HYBRID" or "TERRAIN" to select one of the standard Google Maps API map types. Defaults to 'HYBRID'. |
'HYBRID' |
Source code in geemap/geemap.py
def set_options(self, mapTypeId="HYBRID", **kwargs):
"""Adds Google basemap and controls to the ipyleaflet map.
Args:
mapTypeId (str, optional): A mapTypeId to set the basemap to. Can be one of "ROADMAP", "SATELLITE",
"HYBRID" or "TERRAIN" to select one of the standard Google Maps API map types. Defaults to 'HYBRID'.
"""
try:
self.add(mapTypeId)
except Exception:
raise ValueError(
'Google basemaps can only be one of "ROADMAP", "SATELLITE", "HYBRID" or "TERRAIN".'
)
set_plot_options(self, add_marker_cluster=False, sample_scale=None, plot_type=None, overlay=False, position='bottomright', min_width=None, max_width=None, min_height=None, max_height=None, **kwargs)
¶
Sets plotting options.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
add_marker_cluster |
bool |
Whether to add a marker cluster. Defaults to False. |
False |
sample_scale |
float |
A nominal scale in meters of the projection to sample in . Defaults to None. |
None |
plot_type |
str |
The plot type can be one of "None", "bar", "scatter" or "hist". Defaults to None. |
None |
overlay |
bool |
Whether to overlay plotted lines on the figure. Defaults to False. |
False |
position |
str |
Position of the control, can be ‘bottomleft’, ‘bottomright’, ‘topleft’, or ‘topright’. Defaults to 'bottomright'. |
'bottomright' |
min_width |
int |
Min width of the widget (in pixels), if None it will respect the content size. Defaults to None. |
None |
max_width |
int |
Max width of the widget (in pixels), if None it will respect the content size. Defaults to None. |
None |
min_height |
int |
Min height of the widget (in pixels), if None it will respect the content size. Defaults to None. |
None |
max_height |
int |
Max height of the widget (in pixels), if None it will respect the content size. Defaults to None. |
None |
Source code in geemap/geemap.py
def set_plot_options(
self,
add_marker_cluster=False,
sample_scale=None,
plot_type=None,
overlay=False,
position="bottomright",
min_width=None,
max_width=None,
min_height=None,
max_height=None,
**kwargs,
):
"""Sets plotting options.
Args:
add_marker_cluster (bool, optional): Whether to add a marker cluster. Defaults to False.
sample_scale (float, optional): A nominal scale in meters of the projection to sample in . Defaults to None.
plot_type (str, optional): The plot type can be one of "None", "bar", "scatter" or "hist". Defaults to None.
overlay (bool, optional): Whether to overlay plotted lines on the figure. Defaults to False.
position (str, optional): Position of the control, can be ‘bottomleft’, ‘bottomright’, ‘topleft’, or ‘topright’. Defaults to 'bottomright'.
min_width (int, optional): Min width of the widget (in pixels), if None it will respect the content size. Defaults to None.
max_width (int, optional): Max width of the widget (in pixels), if None it will respect the content size. Defaults to None.
min_height (int, optional): Min height of the widget (in pixels), if None it will respect the content size. Defaults to None.
max_height (int, optional): Max height of the widget (in pixels), if None it will respect the content size. Defaults to None.
"""
plot_options_dict = {}
plot_options_dict["add_marker_cluster"] = add_marker_cluster
plot_options_dict["sample_scale"] = sample_scale
plot_options_dict["plot_type"] = plot_type
plot_options_dict["overlay"] = overlay
plot_options_dict["position"] = position
plot_options_dict["min_width"] = min_width
plot_options_dict["max_width"] = max_width
plot_options_dict["min_height"] = min_height
plot_options_dict["max_height"] = max_height
for key in kwargs:
plot_options_dict[key] = kwargs[key]
self._plot_options = plot_options_dict
if not hasattr(self, "_plot_marker_cluster"):
self._plot_marker_cluster = ipyleaflet.MarkerCluster(name="Marker Cluster")
if add_marker_cluster and (self._plot_marker_cluster not in self.layers):
self.add(self._plot_marker_cluster)
show_layer(self, name, show=True)
¶
Shows or hides a layer on the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str |
Name of the layer to show/hide. |
required |
show |
bool |
Whether to show or hide the layer. Defaults to True. |
True |
Source code in geemap/geemap.py
def show_layer(self, name, show=True):
"""Shows or hides a layer on the map.
Args:
name (str): Name of the layer to show/hide.
show (bool, optional): Whether to show or hide the layer. Defaults to True.
"""
layer = self.find_layer(name)
if layer is not None:
layer.visible = show
split_map(self, left_layer='HYBRID', right_layer='ROADMAP', zoom_control=True, fullscreen_control=True, layer_control=True, add_close_button=False, left_label=None, right_label=None, left_position='bottomleft', right_position='bottomright', widget_layout=None, **kwargs)
¶
Adds split map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
left_layer |
str |
The layer tile layer. Defaults to 'HYBRID'. |
'HYBRID' |
right_layer |
str |
The right tile layer. Defaults to 'ROADMAP'. |
'ROADMAP' |
zoom_control |
bool |
Whether to show the zoom control. Defaults to True. |
True |
fullscreen_control |
bool |
Whether to show the full screen control. Defaults to True. |
True |
layer_control |
bool |
Whether to show the layer control. Defaults to True. |
True |
add_close_button |
bool |
Whether to add a close button. Defaults to False. |
False |
left_label |
str |
The label for the left map. Defaults to None. |
None |
right_label |
str |
The label for the right map. Defaults to None. |
None |
left_position |
str |
The position of the left label. Defaults to 'bottomleft'. |
'bottomleft' |
right_position |
str |
The position of the right label. Defaults to 'bottomright'. |
'bottomright' |
widget_layout |
str |
The layout of the label widget, such as ipywidgets.Layout(padding="0px 4px 0px 4px"). Defaults to None. |
None |
kwargs |
Other arguments for ipyleaflet.TileLayer. |
{} |
Source code in geemap/geemap.py
def split_map(
self,
left_layer="HYBRID",
right_layer="ROADMAP",
zoom_control=True,
fullscreen_control=True,
layer_control=True,
add_close_button=False,
left_label=None,
right_label=None,
left_position="bottomleft",
right_position="bottomright",
widget_layout=None,
**kwargs,
):
"""Adds split map.
Args:
left_layer (str, optional): The layer tile layer. Defaults to 'HYBRID'.
right_layer (str, optional): The right tile layer. Defaults to 'ROADMAP'.
zoom_control (bool, optional): Whether to show the zoom control. Defaults to True.
fullscreen_control (bool, optional): Whether to show the full screen control. Defaults to True.
layer_control (bool, optional): Whether to show the layer control. Defaults to True.
add_close_button (bool, optional): Whether to add a close button. Defaults to False.
left_label (str, optional): The label for the left map. Defaults to None.
right_label (str, optional): The label for the right map. Defaults to None.
left_position (str, optional): The position of the left label. Defaults to 'bottomleft'.
right_position (str, optional): The position of the right label. Defaults to 'bottomright'.
widget_layout (str, optional): The layout of the label widget, such as ipywidgets.Layout(padding="0px 4px 0px 4px"). Defaults to None.
kwargs: Other arguments for ipyleaflet.TileLayer.
"""
if "max_zoom" not in kwargs:
kwargs["max_zoom"] = 100
if "max_native_zoom" not in kwargs:
kwargs["max_native_zoom"] = 100
try:
controls = self.controls
layers = self.layers
self.clear_controls()
if zoom_control:
self.add(ipyleaflet.ZoomControl())
if fullscreen_control:
self.add(ipyleaflet.FullScreenControl())
if left_label is not None:
left_name = left_label
else:
left_name = "Left Layer"
if right_label is not None:
right_name = right_label
else:
right_name = "Right Layer"
if "attribution" not in kwargs:
kwargs["attribution"] = " "
if left_layer in basemaps.keys():
left_layer = get_basemap(left_layer)
elif isinstance(left_layer, str):
if left_layer.startswith("http") and left_layer.endswith(".tif"):
url = cog_tile(left_layer)
left_layer = ipyleaflet.TileLayer(
url=url,
name=left_name,
**kwargs,
)
else:
left_layer = ipyleaflet.TileLayer(
url=left_layer,
name=left_name,
**kwargs,
)
elif isinstance(left_layer, ipyleaflet.TileLayer):
pass
else:
raise ValueError(
f"left_layer must be one of the following: {', '.join(basemaps.keys())} or a string url to a tif file."
)
if right_layer in basemaps.keys():
right_layer = get_basemap(right_layer)
elif isinstance(right_layer, str):
if right_layer.startswith("http") and right_layer.endswith(".tif"):
url = cog_tile(right_layer)
right_layer = ipyleaflet.TileLayer(
url=url,
name=right_name,
**kwargs,
)
else:
right_layer = ipyleaflet.TileLayer(
url=right_layer,
name=right_name,
**kwargs,
)
elif isinstance(right_layer, ipyleaflet.TileLayer):
pass
else:
raise ValueError(
f"right_layer must be one of the following: {', '.join(basemaps.keys())} or a string url to a tif file."
)
control = ipyleaflet.SplitMapControl(
left_layer=left_layer, right_layer=right_layer
)
self.add(control)
self.dragging = False
if left_label is not None:
if widget_layout is None:
widget_layout = widgets.Layout(padding="0px 4px 0px 4px")
left_widget = widgets.HTML(value=left_label, layout=widget_layout)
left_control = ipyleaflet.WidgetControl(
widget=left_widget, position=left_position
)
self.add(left_control)
if right_label is not None:
if widget_layout is None:
widget_layout = widgets.Layout(padding="0px 4px 0px 4px")
right_widget = widgets.HTML(value=right_label, layout=widget_layout)
right_control = ipyleaflet.WidgetControl(
widget=right_widget, position=right_position
)
self.add(right_control)
close_button = widgets.ToggleButton(
value=False,
tooltip="Close split-panel map",
icon="times",
layout=widgets.Layout(
height="28px", width="28px", padding="0px 0px 0px 4px"
),
)
def close_btn_click(change):
if change["new"]:
self.controls = controls
self.layers = layers[:-1]
self.add(layers[-1])
if left_label is not None:
self.remove_control(left_control)
if right_label is not None:
self.remove_control(right_control)
close_button.observe(close_btn_click, "value")
close_control = ipyleaflet.WidgetControl(
widget=close_button, position="bottomright"
)
if add_close_button:
self.add(close_control)
if layer_control:
self.addLayerControl()
except Exception as e:
print("The provided layers are invalid!")
raise ValueError(e)
to_gradio(self, width='100%', height='500px', **kwargs)
¶
Converts the map to an HTML string that can be used in Gradio. Removes unsupported elements, such as attribution and any code blocks containing functions. See https://github.com/gradio-app/gradio/issues/3190
Parameters:
Name | Type | Description | Default |
---|---|---|---|
width |
str |
The width of the map. Defaults to '100%'. |
'100%' |
height |
str |
The height of the map. Defaults to '500px'. |
'500px' |
Returns:
Type | Description |
---|---|
str |
The HTML string to use in Gradio. |
Source code in geemap/geemap.py
def to_gradio(self, width="100%", height="500px", **kwargs):
"""Converts the map to an HTML string that can be used in Gradio. Removes unsupported elements, such as
attribution and any code blocks containing functions. See https://github.com/gradio-app/gradio/issues/3190
Args:
width (str, optional): The width of the map. Defaults to '100%'.
height (str, optional): The height of the map. Defaults to '500px'.
Returns:
str: The HTML string to use in Gradio.
"""
print(
"The ipyleaflet plotting backend does not support this function. Please use the folium backend instead."
)
to_html(self, filename=None, title='My Map', width='100%', height='880px', add_layer_control=True, **kwargs)
¶
Saves the map as an HTML file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename |
str |
The output file path to the HTML file. |
None |
title |
str |
The title of the HTML file. Defaults to 'My Map'. |
'My Map' |
width |
str |
The width of the map in pixels or percentage. Defaults to '100%'. |
'100%' |
height |
str |
The height of the map in pixels. Defaults to '880px'. |
'880px' |
add_layer_control |
bool |
Whether to add the LayersControl. Defaults to True. |
True |
Source code in geemap/geemap.py
def to_html(
self,
filename=None,
title="My Map",
width="100%",
height="880px",
add_layer_control=True,
**kwargs,
):
"""Saves the map as an HTML file.
Args:
filename (str, optional): The output file path to the HTML file.
title (str, optional): The title of the HTML file. Defaults to 'My Map'.
width (str, optional): The width of the map in pixels or percentage. Defaults to '100%'.
height (str, optional): The height of the map in pixels. Defaults to '880px'.
add_layer_control (bool, optional): Whether to add the LayersControl. Defaults to True.
"""
try:
save = True
if filename is not None:
if not filename.endswith(".html"):
raise ValueError("The output file extension must be html.")
filename = os.path.abspath(filename)
out_dir = os.path.dirname(filename)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
else:
filename = os.path.abspath(random_string() + ".html")
save = False
if add_layer_control and self.layer_control is None:
layer_control = ipyleaflet.LayersControl(position="topright")
self.layer_control = layer_control
self.add(layer_control)
before_width = self.layout.width
before_height = self.layout.height
if not isinstance(width, str):
print("width must be a string.")
return
elif width.endswith("px") or width.endswith("%"):
pass
else:
print("width must end with px or %")
return
if not isinstance(height, str):
print("height must be a string.")
return
elif not height.endswith("px"):
print("height must end with px")
return
self.layout.width = width
self.layout.height = height
self.save(filename, title=title, **kwargs)
self.layout.width = before_width
self.layout.height = before_height
if not save:
out_html = ""
with open(filename) as f:
lines = f.readlines()
out_html = "".join(lines)
os.remove(filename)
return out_html
except Exception as e:
raise Exception(e)
to_image(self, filename=None, monitor=1)
¶
Saves the map as a PNG or JPG image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename |
str |
The output file path to the image. Defaults to None. |
None |
monitor |
int |
The monitor to take the screenshot. Defaults to 1. |
1 |
Source code in geemap/geemap.py
def to_image(self, filename=None, monitor=1):
"""Saves the map as a PNG or JPG image.
Args:
filename (str, optional): The output file path to the image. Defaults to None.
monitor (int, optional): The monitor to take the screenshot. Defaults to 1.
"""
self.screenshot = None
if filename is None:
filename = os.path.join(os.getcwd(), "my_map.png")
if filename.endswith(".png") or filename.endswith(".jpg"):
pass
else:
print("The output file must be a PNG or JPG image.")
return
work_dir = os.path.dirname(filename)
if not os.path.exists(work_dir):
os.makedirs(work_dir)
screenshot = screen_capture(filename, monitor)
self.screenshot = screenshot
to_streamlit(self, width=None, height=600, scrolling=False, **kwargs)
¶
Renders map figure in a Streamlit app.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
width |
int |
Width of the map. Defaults to None. |
None |
height |
int |
Height of the map. Defaults to 600. |
600 |
responsive |
bool |
Whether to make the map responsive. Defaults to True. |
required |
scrolling |
bool |
If True, show a scrollbar when the content is larger than the iframe. Otherwise, do not show a scrollbar. Defaults to False. |
False |
Returns:
Type | Description |
---|---|
streamlit.components |
components.html object. |
Source code in geemap/geemap.py
def to_streamlit(self, width=None, height=600, scrolling=False, **kwargs):
"""Renders map figure in a Streamlit app.
Args:
width (int, optional): Width of the map. Defaults to None.
height (int, optional): Height of the map. Defaults to 600.
responsive (bool, optional): Whether to make the map responsive. Defaults to True.
scrolling (bool, optional): If True, show a scrollbar when the content is larger than the iframe. Otherwise, do not show a scrollbar. Defaults to False.
Returns:
streamlit.components: components.html object.
"""
try:
import streamlit.components.v1 as components
# if responsive:
# make_map_responsive = """
# <style>
# [title~="st.iframe"] { width: 100%}
# </style>
# """
# st.markdown(make_map_responsive, unsafe_allow_html=True)
return components.html(
self.to_html(), width=width, height=height, scrolling=scrolling
)
except Exception as e:
raise Exception(e)
toolbar_reset(self)
¶
Reset the toolbar so that no tool is selected.
Source code in geemap/geemap.py
def toolbar_reset(self):
"""Reset the toolbar so that no tool is selected."""
if hasattr(self, "_toolbar"):
toolbar_grid = self._toolbar
if toolbar_grid is not None:
for tool in toolbar_grid.children:
tool.value = False
ts_inspector(self, left_ts, left_names=None, left_vis={}, left_index=0, right_ts=None, right_names=None, right_vis=None, right_index=-1, width='130px', date_format='YYYY-MM-dd', add_close_button=False, **kwargs)
¶
Creates a split-panel map for inspecting timeseries images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
left_ts |
object |
An ee.ImageCollection to show on the left panel. |
required |
left_names |
list |
A list of names to show under the left dropdown. |
None |
left_vis |
dict |
Visualization parameters for the left layer. Defaults to {}. |
{} |
left_index |
int |
The index of the left layer to show. Defaults to 0. |
0 |
right_ts |
object |
An ee.ImageCollection to show on the right panel. |
None |
right_names |
list |
A list of names to show under the right dropdown. |
None |
right_vis |
dict |
Visualization parameters for the right layer. Defaults to {}. |
None |
right_index |
int |
The index of the right layer to show. Defaults to -1. |
-1 |
width |
str |
The width of the dropdown list. Defaults to '130px'. |
'130px' |
date_format |
str |
The date format to show in the dropdown. Defaults to 'YYYY-MM-dd'. |
'YYYY-MM-dd' |
add_close_button |
bool |
Whether to show the close button. Defaults to False. |
False |
Source code in geemap/geemap.py
def ts_inspector(
self,
left_ts,
left_names=None,
left_vis={},
left_index=0,
right_ts=None,
right_names=None,
right_vis=None,
right_index=-1,
width="130px",
date_format="YYYY-MM-dd",
add_close_button=False,
**kwargs,
):
"""Creates a split-panel map for inspecting timeseries images.
Args:
left_ts (object): An ee.ImageCollection to show on the left panel.
left_names (list): A list of names to show under the left dropdown.
left_vis (dict, optional): Visualization parameters for the left layer. Defaults to {}.
left_index (int, optional): The index of the left layer to show. Defaults to 0.
right_ts (object): An ee.ImageCollection to show on the right panel.
right_names (list): A list of names to show under the right dropdown.
right_vis (dict, optional): Visualization parameters for the right layer. Defaults to {}.
right_index (int, optional): The index of the right layer to show. Defaults to -1.
width (str, optional): The width of the dropdown list. Defaults to '130px'.
date_format (str, optional): The date format to show in the dropdown. Defaults to 'YYYY-MM-dd'.
add_close_button (bool, optional): Whether to show the close button. Defaults to False.
"""
controls = self.controls
layers = self.layers
if left_names is None:
left_names = image_dates(left_ts, date_format=date_format).getInfo()
if right_ts is None:
right_ts = left_ts
if right_names is None:
right_names = left_names
if right_vis is None:
right_vis = left_vis
left_count = int(left_ts.size().getInfo())
right_count = int(right_ts.size().getInfo())
if left_count != len(left_names):
print(
"The number of images in left_ts must match the number of layer names in left_names."
)
return
if right_count != len(right_names):
print(
"The number of images in right_ts must match the number of layer names in right_names."
)
return
left_layer = ipyleaflet.TileLayer(
url="https://mt1.google.com/vt/lyrs=m&x={x}&y={y}&z={z}",
attribution="Google",
name="Google Maps",
)
right_layer = ipyleaflet.TileLayer(
url="https://mt1.google.com/vt/lyrs=m&x={x}&y={y}&z={z}",
attribution="Google",
name="Google Maps",
)
self.clear_controls()
left_dropdown = widgets.Dropdown(options=left_names, value=None)
right_dropdown = widgets.Dropdown(options=right_names, value=None)
left_dropdown.layout.max_width = width
right_dropdown.layout.max_width = width
left_control = ipyleaflet.WidgetControl(
widget=left_dropdown, position="topleft"
)
right_control = ipyleaflet.WidgetControl(
widget=right_dropdown, position="topright"
)
self.add(left_control)
self.add(right_control)
self.add(ipyleaflet.ZoomControl(position="topleft"))
self.add(ipyleaflet.ScaleControl(position="bottomleft"))
self.add(ipyleaflet.FullScreenControl())
def left_dropdown_change(change):
left_dropdown_index = left_dropdown.index
if left_dropdown_index is not None and left_dropdown_index >= 0:
try:
if isinstance(left_ts, ee.ImageCollection):
left_image = left_ts.toList(left_ts.size()).get(
left_dropdown_index
)
elif isinstance(left_ts, ee.List):
left_image = left_ts.get(left_dropdown_index)
else:
print("The left_ts argument must be an ImageCollection.")
return
if isinstance(left_image, ee.ImageCollection):
left_image = ee.Image(left_image.mosaic())
elif isinstance(left_image, ee.Image):
pass
else:
left_image = ee.Image(left_image)
left_image = EELeafletTileLayer(
left_image, left_vis, left_names[left_dropdown_index]
)
left_layer.url = left_image.url
except Exception as e:
print(e)
return
left_dropdown.observe(left_dropdown_change, names="value")
def right_dropdown_change(change):
right_dropdown_index = right_dropdown.index
if right_dropdown_index is not None and right_dropdown_index >= 0:
try:
if isinstance(right_ts, ee.ImageCollection):
right_image = right_ts.toList(left_ts.size()).get(
right_dropdown_index
)
elif isinstance(right_ts, ee.List):
right_image = right_ts.get(right_dropdown_index)
else:
print("The left_ts argument must be an ImageCollection.")
return
if isinstance(right_image, ee.ImageCollection):
right_image = ee.Image(right_image.mosaic())
elif isinstance(right_image, ee.Image):
pass
else:
right_image = ee.Image(right_image)
right_image = EELeafletTileLayer(
right_image,
right_vis,
right_names[right_dropdown_index],
)
right_layer.url = right_image.url
except Exception as e:
print(e)
return
right_dropdown.observe(right_dropdown_change, names="value")
if left_index is not None:
left_dropdown.value = left_names[left_index]
if right_index is not None:
right_dropdown.value = right_names[right_index]
close_button = widgets.ToggleButton(
value=False,
tooltip="Close the tool",
icon="times",
# button_style="primary",
layout=widgets.Layout(
height="28px", width="28px", padding="0px 0px 0px 4px"
),
)
def close_btn_click(change):
if change["new"]:
self.controls = controls
self.clear_layers()
self.layers = layers
close_button.observe(close_btn_click, "value")
close_control = ipyleaflet.WidgetControl(
widget=close_button, position="bottomright"
)
try:
split_control = ipyleaflet.SplitMapControl(
left_layer=left_layer, right_layer=right_layer
)
self.add(split_control)
self.dragging = False
if add_close_button:
self.add(close_control)
except Exception as e:
raise Exception(e)
update_layer_manager(self)
¶
Update the Layer Manager.
Source code in geemap/geemap.py
def update_layer_manager(self):
"""Update the Layer Manager."""
from .toolbar import layer_manager_gui
self.layer_manager_widget.children = layer_manager_gui(self, return_widget=True)
user_roi_coords(self, decimals=4)
¶
Return the bounding box of the ROI as a list of coordinates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
decimals |
int |
Number of decimals to round the coordinates to. Defaults to 4. |
4 |
Source code in geemap/geemap.py
def user_roi_coords(self, decimals=4):
"""Return the bounding box of the ROI as a list of coordinates.
Args:
decimals (int, optional): Number of decimals to round the coordinates to. Defaults to 4.
"""
return bbox_coords(self.user_roi, decimals=decimals)
video_overlay(self, url, bounds, name='Video')
¶
Overlays a video from the Internet on the map.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url |
str |
http URL of the video, such as "https://www.mapbox.com/bites/00188/patricia_nasa.webm" |
required |
bounds |
tuple |
bounding box of the video in the format of (lower_left(lat, lon), upper_right(lat, lon)), such as ((13, -130), (32, -100)). |
required |
name |
str |
name of the layer to show on the layer control. |
'Video' |
Source code in geemap/geemap.py
def video_overlay(self, url, bounds, name="Video"):
"""Overlays a video from the Internet on the map.
Args:
url (str): http URL of the video, such as "https://www.mapbox.com/bites/00188/patricia_nasa.webm"
bounds (tuple): bounding box of the video in the format of (lower_left(lat, lon), upper_right(lat, lon)), such as ((13, -130), (32, -100)).
name (str): name of the layer to show on the layer control.
"""
try:
video = ipyleaflet.VideoOverlay(url=url, bounds=bounds, name=name)
self.add(video)
except Exception as e:
print(e)
zoom_to_bounds(self, bounds)
¶
Zooms to a bounding box in the form of [minx, miny, maxx, maxy].
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bounds |
list | tuple |
A list/tuple containing minx, miny, maxx, maxy values for the bounds. |
required |
Source code in geemap/geemap.py
def zoom_to_bounds(self, bounds):
"""Zooms to a bounding box in the form of [minx, miny, maxx, maxy].
Args:
bounds (list | tuple): A list/tuple containing minx, miny, maxx, maxy values for the bounds.
"""
# The ipyleaflet fit_bounds method takes lat/lon bounds in the form [[south, west], [north, east]].
self.fit_bounds([[bounds[1], bounds[0]], [bounds[3], bounds[2]]])
zoom_to_gdf(self, gdf)
¶
Zooms to the bounding box of a GeoPandas GeoDataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gdf |
GeoDataFrame |
A GeoPandas GeoDataFrame. |
required |
Source code in geemap/geemap.py
def zoom_to_gdf(self, gdf):
"""Zooms to the bounding box of a GeoPandas GeoDataFrame.
Args:
gdf (GeoDataFrame): A GeoPandas GeoDataFrame.
"""
bounds = gdf.total_bounds
self.zoom_to_bounds(bounds)
zoom_to_me(self, zoom=14, add_marker=True)
¶
Zoom to the current device location.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
zoom |
int |
Zoom level. Defaults to 14. |
14 |
add_marker |
bool |
Whether to add a marker of the current device location. Defaults to True. |
True |
Source code in geemap/geemap.py
def zoom_to_me(self, zoom=14, add_marker=True):
"""Zoom to the current device location.
Args:
zoom (int, optional): Zoom level. Defaults to 14.
add_marker (bool, optional): Whether to add a marker of the current device location. Defaults to True.
"""
lat, lon = get_current_latlon()
self.set_center(lon, lat, zoom)
if add_marker:
marker = ipyleaflet.Marker(
location=(lat, lon),
draggable=False,
name="Device location",
)
self.add(marker)
ee_tile_layer(ee_object, vis_params={}, name='Layer untitled', shown=True, opacity=1.0)
¶
Converts and Earth Engine layer to ipyleaflet TileLayer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ee_object |
Collection|Feature|Image|MapId |
The object to add to the map. |
required |
vis_params |
dict |
The visualization parameters. Defaults to {}. |
{} |
name |
str |
The name of the layer. Defaults to 'Layer untitled'. |
'Layer untitled' |
shown |
bool |
A flag indicating whether the layer should be on by default. Defaults to True. |
True |
opacity |
float |
The layer's opacity represented as a number between 0 and 1. Defaults to 1. |
1.0 |
Source code in geemap/geemap.py
def ee_tile_layer(
ee_object, vis_params={}, name="Layer untitled", shown=True, opacity=1.0
):
"""Converts and Earth Engine layer to ipyleaflet TileLayer.
Args:
ee_object (Collection|Feature|Image|MapId): The object to add to the map.
vis_params (dict, optional): The visualization parameters. Defaults to {}.
name (str, optional): The name of the layer. Defaults to 'Layer untitled'.
shown (bool, optional): A flag indicating whether the layer should be on by default. Defaults to True.
opacity (float, optional): The layer's opacity represented as a number between 0 and 1. Defaults to 1.
"""
return EELeafletTileLayer(ee_object, vis_params, name, shown, opacity)
get_basemap(name)
¶
Gets a basemap tile layer by name.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str |
The name of the basemap. |
required |
Returns:
Type | Description |
---|---|
ipylealfet.TileLayer | ipyleaflet.WMSLayer |
The basemap layer. |
Source code in geemap/geemap.py
def get_basemap(name):
"""Gets a basemap tile layer by name.
Args:
name (str): The name of the basemap.
Returns:
ipylealfet.TileLayer | ipyleaflet.WMSLayer: The basemap layer.
"""
if isinstance(name, str):
if name in basemaps.keys():
basemap = basemaps[name]
if basemap["type"] in ["xyz", "normal", "grau"]:
layer = ipyleaflet.TileLayer(
url=basemap["url"],
name=basemap["name"],
max_zoom=24,
attribution=basemap["attribution"],
)
elif basemap["type"] == "wms":
layer = ipyleaflet.WMSLayer(
url=basemap["url"],
layers=basemap["layers"],
name=basemap["name"],
attribution=basemap["attribution"],
format=basemap["format"],
transparent=basemap["transparent"],
)
return layer
else:
raise ValueError(
"Basemap must be a string. Please choose from: "
+ str(list(basemaps.keys()))
)
else:
raise ValueError(
"Basemap must be a string. Please choose from: "
+ str(list(basemaps.keys()))
)
linked_maps(rows=2, cols=2, height='400px', ee_objects=[], vis_params=[], labels=[], label_position='topright', **kwargs)
¶
Create linked maps of Earth Engine data layers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
rows |
int |
The number of rows of maps to create. Defaults to 2. |
2 |
cols |
int |
The number of columns of maps to create. Defaults to 2. |
2 |
height |
str |
The height of each map in pixels. Defaults to "400px". |
'400px' |
ee_objects |
list |
The list of Earth Engine objects to use for each map. Defaults to []. |
[] |
vis_params |
list |
The list of visualization parameters to use for each map. Defaults to []. |
[] |
labels |
list |
The list of labels to show on the map. Defaults to []. |
[] |
label_position |
str |
The position of the label, can be [topleft, topright, bottomleft, bottomright]. Defaults to "topright". |
'topright' |
Exceptions:
Type | Description |
---|---|
ValueError |
If the length of ee_objects is not equal to rows*cols. |
ValueError |
If the length of vis_params is not equal to rows*cols. |
ValueError |
If the length of labels is not equal to rows*cols. |
Returns:
Type | Description |
---|---|
ipywidget |
A GridspecLayout widget. |
Source code in geemap/geemap.py
def linked_maps(
rows=2,
cols=2,
height="400px",
ee_objects=[],
vis_params=[],
labels=[],
label_position="topright",
**kwargs,
):
"""Create linked maps of Earth Engine data layers.
Args:
rows (int, optional): The number of rows of maps to create. Defaults to 2.
cols (int, optional): The number of columns of maps to create. Defaults to 2.
height (str, optional): The height of each map in pixels. Defaults to "400px".
ee_objects (list, optional): The list of Earth Engine objects to use for each map. Defaults to [].
vis_params (list, optional): The list of visualization parameters to use for each map. Defaults to [].
labels (list, optional): The list of labels to show on the map. Defaults to [].
label_position (str, optional): The position of the label, can be [topleft, topright, bottomleft, bottomright]. Defaults to "topright".
Raises:
ValueError: If the length of ee_objects is not equal to rows*cols.
ValueError: If the length of vis_params is not equal to rows*cols.
ValueError: If the length of labels is not equal to rows*cols.
Returns:
ipywidget: A GridspecLayout widget.
"""
grid = widgets.GridspecLayout(rows, cols, grid_gap="0px")
count = rows * cols
maps = []
if len(ee_objects) > 0:
if len(ee_objects) == 1:
ee_objects = ee_objects * count
elif len(ee_objects) < count:
raise ValueError(f"The length of ee_objects must be equal to {count}.")
if len(vis_params) > 0:
if len(vis_params) == 1:
vis_params = vis_params * count
elif len(vis_params) < count:
raise ValueError(f"The length of vis_params must be equal to {count}.")
if len(labels) > 0:
if len(labels) == 1:
labels = labels * count
elif len(labels) < count:
raise ValueError(f"The length of labels must be equal to {count}.")
for i in range(rows):
for j in range(cols):
index = i * rows + j
m = Map(
height=height,
lite_mode=True,
add_google_map=False,
layout=widgets.Layout(margin="0px", padding="0px"),
**kwargs,
)
if len(ee_objects) > 0:
m.addLayer(ee_objects[index], vis_params[index], labels[index])
if len(labels) > 0:
label = widgets.Label(
labels[index], layout=widgets.Layout(padding="0px 5px 0px 5px")
)
control = ipyleaflet.WidgetControl(
widget=label, position=label_position
)
m.add(control)
maps.append(m)
widgets.jslink((maps[0], "center"), (m, "center"))
widgets.jslink((maps[0], "zoom"), (m, "zoom"))
output = widgets.Output()
with output:
display(m)
grid[i, j] = output
return grid
ts_inspector(layers_dict=None, left_name=None, right_name=None, width='120px', center=[40, -100], zoom=4, **kwargs)
¶
Creates a time series inspector.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
layers_dict |
dict |
A dictionary of layers to be shown on the map. Defaults to None. |
None |
left_name |
str |
A name for the left layer. Defaults to None. |
None |
right_name |
str |
A name for the right layer. Defaults to None. |
None |
width |
str |
Width of the dropdown list. Defaults to "120px". |
'120px' |
center |
list |
Center of the map. Defaults to [40, -100]. |
[40, -100] |
zoom |
int |
Zoom level of the map. Defaults to 4. |
4 |
Returns:
Type | Description |
---|---|
leafmap.Map |
The Map instance. |
Source code in geemap/geemap.py
def ts_inspector(
layers_dict=None,
left_name=None,
right_name=None,
width="120px",
center=[40, -100],
zoom=4,
**kwargs,
):
"""Creates a time series inspector.
Args:
layers_dict (dict, optional): A dictionary of layers to be shown on the map. Defaults to None.
left_name (str, optional): A name for the left layer. Defaults to None.
right_name (str, optional): A name for the right layer. Defaults to None.
width (str, optional): Width of the dropdown list. Defaults to "120px".
center (list, optional): Center of the map. Defaults to [40, -100].
zoom (int, optional): Zoom level of the map. Defaults to 4.
Returns:
leafmap.Map: The Map instance.
"""
import ipywidgets as widgets
add_zoom = True
add_fullscreen = True
if "toolbar_control" not in kwargs:
kwargs["toolbar_control"] = False
if "draw_control" not in kwargs:
kwargs["draw_control"] = False
if "measure_control" not in kwargs:
kwargs["measure_control"] = False
if "zoom_control" not in kwargs:
kwargs["zoom_control"] = False
else:
add_zoom = kwargs["zoom_control"]
if "fullscreen_control" not in kwargs:
kwargs["fullscreen_control"] = False
else:
add_fullscreen = kwargs["fullscreen_control"]
if layers_dict is None:
layers_dict = {}
keys = dict(basemaps).keys()
for key in keys:
if basemaps[key]["type"] == "wms":
pass
else:
layers_dict[key] = basemaps[key]
keys = list(layers_dict.keys())
if left_name is None:
left_name = keys[0]
if right_name is None:
right_name = keys[-1]
left_layer = layers_dict[left_name]
right_layer = layers_dict[right_name]
m = Map(center=center, zoom=zoom, **kwargs)
control = ipyleaflet.SplitMapControl(left_layer=left_layer, right_layer=right_layer)
m.add(control)
m.dragging = False
left_dropdown = widgets.Dropdown(
options=keys, value=left_name, layout=widgets.Layout(width=width)
)
left_control = ipyleaflet.WidgetControl(widget=left_dropdown, position="topleft")
m.add(left_control)
right_dropdown = widgets.Dropdown(
options=keys, value=right_name, layout=widgets.Layout(width=width)
)
right_control = ipyleaflet.WidgetControl(widget=right_dropdown, position="topright")
m.add(right_control)
if add_zoom:
m.add(ipyleaflet.ZoomControl())
if add_fullscreen:
m.add(ipyleaflet.FullScreenControl())
split_control = None
for ctrl in m.controls:
if isinstance(ctrl, ipyleaflet.SplitMapControl):
split_control = ctrl
break
def left_change(change):
split_control.left_layer.url = layers_dict[left_dropdown.value].url
left_dropdown.observe(left_change, "value")
def right_change(change):
split_control.right_layer.url = layers_dict[right_dropdown.value].url
right_dropdown.observe(right_change, "value")
return m
Created: 2020-08-22