Skip to content

colormaps module

Module for commonly used colormaps and palettes for visualizing Earth Engine data.

get_colorbar(colors, vmin=0, vmax=1, width=6.0, height=0.4, orientation='horizontal', discrete=False, return_fig=False)

Creates a colorbar based on custom colors.

Parameters:

Name Type Description Default
colors list

A list of hex colors.

required
vmin float

The minimum value range. Defaults to 0.

0
vmax float

The maximum value range. Defaults to 1.0.

1
width float

The width of the colormap. Defaults to 6.0.

6.0
height float

The height of the colormap. Defaults to 0.4.

0.4
orientation str

The orientation of the colormap. Defaults to "horizontal".

'horizontal'
discrete bool

Whether to create a discrete colormap.

False
return_fig bool

Whether to return the figure. Defaults to False.

False
Source code in geemap/colormaps.py
def get_colorbar(
    colors,
    vmin=0,
    vmax=1,
    width=6.0,
    height=0.4,
    orientation="horizontal",
    discrete=False,
    return_fig=False,
):
    """Creates a colorbar based on custom colors.

    Args:
        colors (list): A list of hex colors.
        vmin (float, optional): The minimum value range. Defaults to 0.
        vmax (float, optional): The maximum value range. Defaults to 1.0.
        width (float, optional): The width of the colormap. Defaults to 6.0.
        height (float, optional): The height of the colormap. Defaults to 0.4.
        orientation (str, optional): The orientation of the colormap. Defaults to "horizontal".
        discrete (bool, optional): Whether to create a discrete colormap.
        return_fig (bool, optional): Whether to return the figure. Defaults to False.
    """
    hexcodes = [i if i[0] == "#" else "#" + i for i in colors]
    fig, ax = plt.subplots(figsize=(width, height))
    if discrete:
        cmap = mpl.colors.ListedColormap(hexcodes)
        vals = np.linspace(vmin, vmax, cmap.N + 1)
        norm = mpl.colors.BoundaryNorm(vals, cmap.N)
    else:
        cmap = mpl.colors.LinearSegmentedColormap.from_list("custom", hexcodes, N=256)
        norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
    mpl.colorbar.ColorbarBase(ax, norm=norm, cmap=cmap, orientation=orientation)
    if return_fig:
        return fig
    else:
        plt.show()

get_palette(cmap_name=None, n_class=None, hashtag=False)

Get a palette from a matplotlib colormap. See the list of colormaps at https://matplotlib.org/stable/tutorials/colors/colormaps.html.

Parameters:

Name Type Description Default
cmap_name str

The name of the matplotlib colormap. Defaults to None.

None
n_class int

The number of colors. Defaults to None.

None
hashtag bool

Whether to return a list of hex colors. Defaults to False.

False

Returns:

Type Description
list

A list of hex colors.

Source code in geemap/colormaps.py
def get_palette(cmap_name=None, n_class=None, hashtag=False):
    """Get a palette from a matplotlib colormap. See the list of colormaps at https://matplotlib.org/stable/tutorials/colors/colormaps.html.

    Args:
        cmap_name (str, optional): The name of the matplotlib colormap. Defaults to None.
        n_class (int, optional): The number of colors. Defaults to None.
        hashtag (bool, optional): Whether to return a list of hex colors. Defaults to False.

    Returns:
        list: A list of hex colors.
    """

    if cmap_name in ["ndvi", "ndwi", "dem", "dw", "esri_lulc"]:
        colors = _palette_dict[cmap_name]
    else:
        cmap = plt.cm.get_cmap(cmap_name, n_class)
        colors = [mpl.colors.rgb2hex(cmap(i))[1:] for i in range(cmap.N)]
    if hashtag:
        colors = ["#" + i for i in colors]

    return colors

list_colormaps(add_extra=False, lowercase=False)

List all available colormaps. See a complete lost of colormaps at https://matplotlib.org/stable/tutorials/colors/colormaps.html.

Returns:

Type Description
list

The list of colormap names.

Source code in geemap/colormaps.py
def list_colormaps(add_extra=False, lowercase=False):
    """List all available colormaps. See a complete lost of colormaps at https://matplotlib.org/stable/tutorials/colors/colormaps.html.

    Returns:
        list: The list of colormap names.
    """
    result = plt.colormaps()
    if add_extra:
        result += ["dem", "ndvi", "ndwi"]
    if lowercase:
        result = [i.lower() for i in result]
    result.sort()
    return result

plot_colormap(cmap, width=8.0, height=0.4, orientation='horizontal', vmin=0, vmax=1.0, axis_off=True, show_name=False, font_size=12, return_fig=False)

Plot a matplotlib colormap.

Parameters:

Name Type Description Default
cmap str

The name of the colormap.

required
width float

The width of the colormap. Defaults to 8.0.

8.0
height float

The height of the colormap. Defaults to 0.4.

0.4
orientation str

The orientation of the colormap. Defaults to "horizontal".

'horizontal'
vmin float

The minimum value range. Defaults to 0.

0
vmax float

The maximum value range. Defaults to 1.0.

1.0
axis_off bool

Whether to turn axis off. Defaults to True.

True
show_name bool

Whether to show the colormap name. Defaults to False.

False
font_size int

Font size of the text. Defaults to 12.

12
return_fig bool

Whether to return the figure. Defaults to False.

False
Source code in geemap/colormaps.py
def plot_colormap(
    cmap,
    width=8.0,
    height=0.4,
    orientation="horizontal",
    vmin=0,
    vmax=1.0,
    axis_off=True,
    show_name=False,
    font_size=12,
    return_fig=False,
):
    """Plot a matplotlib colormap.

    Args:
        cmap (str): The name of the colormap.
        width (float, optional): The width of the colormap. Defaults to 8.0.
        height (float, optional): The height of the colormap. Defaults to 0.4.
        orientation (str, optional): The orientation of the colormap. Defaults to "horizontal".
        vmin (float, optional): The minimum value range. Defaults to 0.
        vmax (float, optional): The maximum value range. Defaults to 1.0.
        axis_off (bool, optional): Whether to turn axis off. Defaults to True.
        show_name (bool, optional): Whether to show the colormap name. Defaults to False.
        font_size (int, optional): Font size of the text. Defaults to 12.
        return_fig (bool, optional): Whether to return the figure. Defaults to False.
    """
    fig, ax = plt.subplots(figsize=(width, height))
    col_map = plt.get_cmap(cmap)

    norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)

    mpl.colorbar.ColorbarBase(ax, norm=norm, cmap=col_map, orientation=orientation)
    if axis_off:
        ax.set_axis_off()

    if show_name:
        pos = list(ax.get_position().bounds)
        x_text = pos[0] - 0.01
        y_text = pos[1] + pos[3] / 2.0
        fig.text(x_text, y_text, cmap, va="center", ha="right", fontsize=font_size)

    if return_fig:
        return fig
    else:
        plt.show()

plot_colormaps(width=8.0, height=0.4)

Plot all available colormaps.

Parameters:

Name Type Description Default
width float

Width of the colormap. Defaults to 8.0.

8.0
height float

Height of the colormap. Defaults to 0.4.

0.4
Source code in geemap/colormaps.py
def plot_colormaps(width=8.0, height=0.4):
    """Plot all available colormaps.

    Args:
        width (float, optional): Width of the colormap. Defaults to 8.0.
        height (float, optional): Height of the colormap. Defaults to 0.4.
    """
    cmap_list = list_colormaps()
    nrows = len(cmap_list)
    fig, axes = plt.subplots(nrows=nrows, figsize=(width, height * nrows))
    fig.subplots_adjust(top=0.95, bottom=0.01, left=0.2, right=0.99)

    gradient = np.linspace(0, 1, 256)
    gradient = np.vstack((gradient, gradient))

    for ax, name in zip(axes, cmap_list):
        ax.imshow(gradient, aspect="auto", cmap=plt.get_cmap(name))
        ax.set_axis_off()
        pos = list(ax.get_position().bounds)
        x_text = pos[0] - 0.01
        y_text = pos[1] + pos[3] / 2.0
        fig.text(x_text, y_text, name, va="center", ha="right", fontsize=12)

    # Turn off *all* ticks & spines, not just the ones with colormaps.
    for ax in axes:
        ax.set_axis_off()

    plt.show()

Last update: 2021-02-23
Created: 2021-02-19